期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
非等熵Chaplygin气体测度值解存在性 被引量:1
1
作者 陈雨风 陈停停 王振 《数学物理学报(A辑)》 CSCD 北大核心 2020年第4期833-841,共9页
该文研究了一维非等熵Chaplygin气体动力学方程组的黎曼问题.考虑压力和内能均满足一般表示的情况下,利用特征分析的方法,分析经典弱解存在的充要条件.由于该弱解密度会出现集中的现象,因此会产生δ波.该文在Radon测度值解意义下,推导广... 该文研究了一维非等熵Chaplygin气体动力学方程组的黎曼问题.考虑压力和内能均满足一般表示的情况下,利用特征分析的方法,分析经典弱解存在的充要条件.由于该弱解密度会出现集中的现象,因此会产生δ波.该文在Radon测度值解意义下,推导广义RankineHugoniot条件,结合经典熵条件,构造一般黎曼问题的测度值解.该结果是等熵Chaplygin气体弱解存在性的推广. 展开更多
关键词 非等熵Chaplygin气体 黎曼问题 测度值解 广义Rankine-Hugoniot条件
下载PDF
带最大密度限制的Navier-Stokes方程的耗散测度值解
2
作者 李婷婷 华嘉乐 《应用数学进展》 2023年第5期2263-2273,共11页
本文研究具有最大密度限制的可压Navier-Stokes方程,其中,最大密度限制是由一个奇性的压强项给定的。利用带有参数K的Brenner模型,我们构造了Navier-Stokes方程的逼近解。为了处理压强的奇性,引入一个逼近压强pθ,δ,其中θ,δ为逼近参... 本文研究具有最大密度限制的可压Navier-Stokes方程,其中,最大密度限制是由一个奇性的压强项给定的。利用带有参数K的Brenner模型,我们构造了Navier-Stokes方程的逼近解。为了处理压强的奇性,引入一个逼近压强pθ,δ,其中θ,δ为逼近参数。当这些参数K,θ,δ→0时,我们证明逼近解收敛到Navier- Stokes方程的耗散测度值解。 展开更多
关键词 可压NAVIER-STOKES方程 最大密度限制 耗散测度值解
下载PDF
二维带非线性源项单个守恒律的有限体积方法的收敛性
3
作者 李大明 《数学年刊(A辑)》 CSCD 北大核心 2003年第3期299-314,共16页
本文讨论在无结构网格下用有限体积方法离散二维带非线性源项的单个守恒律,在测度值解与Diperna唯一性结果的框架下,证明了估计解在L_(loc)~l(R^2×(0,T))意义下收敛到单个守恒律的熵解。
关键词 守恒律 有限体积格式 测度值解
下载PDF
旋转浅水和欧拉方程的渐近极限
4
作者 刘梦雨 杨建伟 《四川师范大学学报(自然科学版)》 CAS 2023年第5期623-627,共5页
基于测度值解的概念,研究了旋转浅水和欧拉方程的渐近极限问题.在好初值条件下,证明了当弗劳德数趋近于零时,旋转浅水和欧拉方程的测度值解收敛于旋转湖方程的经典解.
关键词 旋转浅水和欧拉方程 测度值解 渐近极限
下载PDF
Predicting Solvent Concentration Profile in the Porous Media Using Various Numerical Solutions to Convection-Dispersion Equation
5
作者 Ali Abedini Farshid Torabi Nader Mosavat 《Journal of Mathematics and System Science》 2012年第7期409-419,共11页
Convection-dispersion of fluids flowing through porous media is an important phenomenon in immiscible and miscible displacement in hydrocarbon reservoirs. Exact calculation of this problem leads to perform more robust... Convection-dispersion of fluids flowing through porous media is an important phenomenon in immiscible and miscible displacement in hydrocarbon reservoirs. Exact calculation of this problem leads to perform more robust reservoir simulation and reliable prediction. There are various techniques that have been proposed to solve convection-dispersion equation. To check the validity of these techniques, the convection-dispersion equation was solved numerically using a series of well known numerical techniques. Such techniques that employed in this study include method of line, explicit, implicit, Crank-Nicolson and Barakat-Clark. Several cases were considered as input, and convection-dispersion equation was solved using the aforementioned techniques. Moreover the error analysis was also carried out based on the comparison of numerical and analytical results. Finally it was observed that method of line and explicit methods are not capable of simulating the convection-dispersion equation for wide range of input parameters. The Barakat-Clark method was also failed to predict accurate results and in some cases it had large deviation from analytical solution. On the other hand, the simulation results of implicit and Crank-Nicolson have more qualitative and quantitative agreement with those obtained by the analytical solutions. 展开更多
关键词 Convection-dispersion method of line EXPLICIT IMPLICIT Crank-Nicolson.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部