In this paper, the authors construct a class of unitary invariant strongly pseudoconvex complex Finsler metrics which are of the form F =√[ rf(s- t)[, where r = ||v||~ 2, s =| z,v |~2/r, t =|| z||~ 2, f(w) is a real-...In this paper, the authors construct a class of unitary invariant strongly pseudoconvex complex Finsler metrics which are of the form F =√[ rf(s- t)[, where r = ||v||~ 2, s =| z,v |~2/r, t =|| z||~ 2, f(w) is a real-valued smooth positive function of w ∈ R,and z is in a unitary invariant domain M C^n. Complex Finsler metrics of this form are unitary invariant. We prove that F is a class of weakly complex Berwald metrics whose holomorphic curvature and Ricci scalar curvature vanish identically and are independent of the choice of the function f. Under initial value conditions on f and its derivative f, we prove that all the real geodesics of F =√[rf(s- t)] on every Euclidean sphere S^(2n-1) M are great circles.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11271304,11171277)the Program for New Century Excellent Talents in University(No.NCET-13-0510)+1 种基金the Fujian Province Natural Science Funds for Distinguished Young Scholars(No.2013J06001)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘In this paper, the authors construct a class of unitary invariant strongly pseudoconvex complex Finsler metrics which are of the form F =√[ rf(s- t)[, where r = ||v||~ 2, s =| z,v |~2/r, t =|| z||~ 2, f(w) is a real-valued smooth positive function of w ∈ R,and z is in a unitary invariant domain M C^n. Complex Finsler metrics of this form are unitary invariant. We prove that F is a class of weakly complex Berwald metrics whose holomorphic curvature and Ricci scalar curvature vanish identically and are independent of the choice of the function f. Under initial value conditions on f and its derivative f, we prove that all the real geodesics of F =√[rf(s- t)] on every Euclidean sphere S^(2n-1) M are great circles.