According to the fact that the surface of liquid with low viscosity coefficient is a good reflection plane for a broadband light beam, liquid-level measurement in micrometer resolution is designed based on a fiber-opt...According to the fact that the surface of liquid with low viscosity coefficient is a good reflection plane for a broadband light beam, liquid-level measurement in micrometer resolution is designed based on a fiber-optic low coherence interferometer in Michelson configuration. The wave front of the reflected light beam is well enough to form an interferogram with a beam reflected from an optic mirror mounted on a stepping scanning-motor. The central peak of the interferogram is read as a measure of the liquid level. Experimental results show that this noncontact method can reach a resolution of ±1.25 μm in the measurement range of 86 mm.展开更多
A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditiona...A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.展开更多
基金Dalian Science and Technology Foundation and National Science Foundation(30470416)
文摘According to the fact that the surface of liquid with low viscosity coefficient is a good reflection plane for a broadband light beam, liquid-level measurement in micrometer resolution is designed based on a fiber-optic low coherence interferometer in Michelson configuration. The wave front of the reflected light beam is well enough to form an interferogram with a beam reflected from an optic mirror mounted on a stepping scanning-motor. The central peak of the interferogram is read as a measure of the liquid level. Experimental results show that this noncontact method can reach a resolution of ±1.25 μm in the measurement range of 86 mm.
基金Project(Z110803)supported by the State Key Laboratory of Geomechanics and Geotechnical Engineering,ChinaProject(2008AA062303)supported by the National High Technology Research and Development Program of China
文摘A fast explicit finite difference method (FEFDM),derived from the differential equations of one-dimensional steady pipe flow,was presented for calculation of wellhead injection pressure.Recalculation with a traditional numerical method of the same equations corroborates well the reliability and rate of FEFDM.Moreover,a flow rate estimate method was developed for the project whose injection rate has not been clearly determined.A wellhead pressure regime determined by this method was successfully applied to the trial injection operations in Shihezi formation of Shenhua CCS Project,which is a good practice verification of FEFDM.At last,this method was used to evaluate the effect of friction and acceleration terms on the flow equation on the wellhead pressure.The result shows that for deep wellbore,the friction term can be omitted when flow rate is low and in a wide range of velocity the acceleration term can always be deleted.It is also shown that with flow rate increasing,the friction term can no longer be neglected.