期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
形影不离
1
作者 邱小珊 《试题与研究(教学论坛)》 2021年第17期195-197,共3页
现实生活情景跟课本知识之间还是有一定的区别的,在初中数学教学应用生活情景,可以培养学生对数学学习的兴趣,促进学生对数学知识的理解和应用,让学生感受到了数学知识与我们的生活息息相关,激发学生学习数学的兴趣和对数学问题探索研... 现实生活情景跟课本知识之间还是有一定的区别的,在初中数学教学应用生活情景,可以培养学生对数学学习的兴趣,促进学生对数学知识的理解和应用,让学生感受到了数学知识与我们的生活息息相关,激发学生学习数学的兴趣和对数学问题探索研究的精神. 展开更多
关键词 相似三角形 测树高 构造和转化思想方法
下载PDF
Travel time prediction model of freeway based on gradient boosting decision tree 被引量:7
2
作者 Cheng Juan Chen Xianhua 《Journal of Southeast University(English Edition)》 EI CAS 2019年第3期393-398,共6页
To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in c... To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in current period Q i , speed in current period V i , density in current period K i , the number of vehicles in current period N i , occupancy in current period R i , traffic state parameter in current period X i , travel time in previous time period T i -1 , etc.) are selected to predict the travel time for 10 min ahead in the proposed model. Data obtained from VISSIM simulation is used to train and test the model. The results demonstrate that the prediction error of the GBDT model is smaller than those of the back propagation (BP) neural network model and the support vector machine (SVM) model. Travel time in current period T i is the most important variable among all variables in the GBDT model. The GBDT model can produce more accurate prediction results and mine the hidden nonlinear relationships deeply between variables and the predicted travel time. 展开更多
关键词 gradient boosting decision tree (GBDT) travel time prediction FREEWAY traffic state parameter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部