This paper analyzed the existing methods of wave measurement, and described the advantages of GPS applied in measuring the wave. The equations of absolute velocity estimation were discussed, focusing on two methods wi...This paper analyzed the existing methods of wave measurement, and described the advantages of GPS applied in measuring the wave. The equations of absolute velocity estimation were discussed, focusing on two methods with Doppler shill. The error sources and their effect on velocity estimation were analyzed. Then, some tests were carried on to simulate dynamic velocity determination using static data Based on the high-frequency carrier-phase derived Doppler observations, the velocity has been estimated to the precision of 1 cm/s or so, even to the mm/s level. And with the receiver generated Doppler measurements, the precision can reach 3 - 15 cm/s.展开更多
Most existing methods for image copy-move forgery detection(CMFD)operate on grayscale images. Although the keypoint-based methods have the advantages of strong robustness and low computational cost,they cannot identif...Most existing methods for image copy-move forgery detection(CMFD)operate on grayscale images. Although the keypoint-based methods have the advantages of strong robustness and low computational cost,they cannot identify the flat duplicated regions without reliable extracted features. In this paper, we propose a new CMFD method by using speeded-up robust feature(SURF)in the opponent color space. Our method starts by converting the inspected image from RGB to the opponent color space. The color gradient per pixel is calculated and taken as the work space for SURF to extract the keypoints. The matched keypoints are clustered and their geometric transformations are estimated. Finally, the false matches are removed. Experimental results show that the proposed technique can effectively expose the duplicated regions with various transformations, even when the duplication regions are flat.展开更多
For validating the results of retrieved mean wave period, four empirical algorithms established previously are introduced. Based on the data of over five years derived from TOPEX satellite altimeter for the entire Eas...For validating the results of retrieved mean wave period, four empirical algorithms established previously are introduced. Based on the data of over five years derived from TOPEX satellite altimeter for the entire East China Sea, ocean wave periods were calculated and statistical comparison among them was performed. The retrieved mean wave period 〈T〉 obtained with our new distribution parameters showed better agreement with the wave period TB measured by buoy than that calculated by other three algorithms. The difference between the mean values of 〈T〉 and that of TB is 0.16 s and the RMSE (root mean square error) of 〈T〉 is the lowest value (0.48).展开更多
This study examined wintertime (November-April) cold wave frequency (CWF) in northern China during the last 42 years and its association with Arctic Oscillation (AO) through analysis of daily mean surface temperature ...This study examined wintertime (November-April) cold wave frequency (CWF) in northern China during the last 42 years and its association with Arctic Oscillation (AO) through analysis of daily mean surface temperature from 280 stations across northern China and European Centre for Medium-Range Weather Forecasts (ECMWF) 40-Year Re-analysis ERA-40 data. The leading empirical orthogonal function EOF mode of wintertime CWF (CWF-EOF1) indicates an identical signal over most northern China, with the characteristic trend of linear decline for the leading principal component (CWF-PC1). After the linear trend is removed, remarkable inter-annual variability is found to be the dominant feature of the CWF-PC1. The regression map for sea level pressure based on CWF-PC1 corresponds to the negative phase of AO. Correlation analysis further proves that CWF-PC1 has a significant negative correlation with AO at the inter-annual time scale. The relationship between AO and global surface air temperature is also investigated in order to understand its association with cold air activity over East Asia, and it is suggested that the anomalies of atmospheric circulation in Siberia may serve as a bridge for interaction between AO and CWF in northern China during wintertime.展开更多
Altimeter wave period data obtained from continental shelf seas are analyzed in this paper. Empirical models are introduced for zero up-crossing and peak wave period calculation with TOPEX/POSEIDON data. Their perform...Altimeter wave period data obtained from continental shelf seas are analyzed in this paper. Empirical models are introduced for zero up-crossing and peak wave period calculation with TOPEX/POSEIDON data. Their performances are assessed using independent validation dataset in four sites in the open ocean of China. To provide more accurate wave period estimation, new coefficients are applied to reliable in situ data. Comparison of our estimated the wave periods with new linear calibrations based on independent data of Seapac 2100 deployed in the East China Sea and South China Sea showed that the accuracy was improved over estimates determined from earlier empirical models. Regional analysis indicated that the wave period model works better under wind sea condition.展开更多
Using the wave model WAVEWATCH III(WW3), we simulated the generation and propagation of typhoon waves in the South China Sea and adjacent areas during the passage of typhoon Nesat(2011). In the domain 100°–145...Using the wave model WAVEWATCH III(WW3), we simulated the generation and propagation of typhoon waves in the South China Sea and adjacent areas during the passage of typhoon Nesat(2011). In the domain 100°–145°E and 0°–35°N, the model was forced by the cross-calibrated multi-platform(CCMP) wind fi elds of September 15 to October 5, 2011. We then validated the simulation results against wave radar data observed from an oil platform and altimeter data from the Jason-2 satellite. The simulated waves were characterized by fi ve points along track using the Spectrum Integration Method(SIM) and the Spectrum Partitioning Method(SPM), by which wind sea and swell components of the 1D and 2D wave spectra are separated. There was reasonable agreement between the model results and observations, although the WW3 wave model may underestimate swell wave height. Signifi cant wave heights are large along the typhoon track and are noticeably greater on the right of the track than on the left. Swells from the east are largely unable to enter the South China Sea because of the obstruction due to the Philippine Islands. During the initial stage and later period of the typhoon, swells at the fi ve points were generated by the propagation of waves that were created by typhoons Haitang and Nalgae. Of the two methods, the 2D SPM method is more accurate than the 1D SIM which overestimates the separation frequency under low winds, but the SIM method is more convenient because it does not require wind speed and wave direction. When the typhoon left the area, the wind sea fractions decreased rapidly. Under similar wind conditions, the points located in the South China Sea are affected less than those points situated in the open sea because of the infl uence of the complex internal topography of the South China Sea. The results reveal the characteristic wind sea and swell features of the South China Sea and adjacent areas in response to typhoon Nesat, and provide a reference for swell forecasting and offshore structural designs.展开更多
The multi-scale characteristics of wave significant height (Hs) in eastern China seas were revealed by multi-scale wavelet analysis. In order to understand the relation between wave and wind, the TOPEX/Poseidon meas...The multi-scale characteristics of wave significant height (Hs) in eastern China seas were revealed by multi-scale wavelet analysis. In order to understand the relation between wave and wind, the TOPEX/Poseidon measurements of Hs and wind speed were analyzed. The result showed that Hs and wind speed change in multi-scale at one-, two-month, half-, one- and two-year cycles. But in a larger time scale, the variations in Hs and wind speed are different. Hs has a five-year cycle similar to the cycle of ENSO variation, while the wind speed has no such cycle. In the time domain, the correlation between Hs and ENSO is unclear.展开更多
To study on the numerical simulation calculation reliability of sea-crossing bridge under complex wave forces,the paper applied GPS deformation monitoring and numerical simulation calculation by researching Qingdao Ji...To study on the numerical simulation calculation reliability of sea-crossing bridge under complex wave forces,the paper applied GPS deformation monitoring and numerical simulation calculation by researching Qingdao Jiaozhou Bay Sea-Crossing Bridge.The db3 wavelet three-layer decomposition was used on the horizontal movement of the sea-crossing bridge and the wind speed of the waves to analyze their correlation.The complex wave forces value of Qingdao Jiaozhou Bay Sea-Crossing Bridge was loaded on FLAC3D software successfully to make numerical simulation calculation of bridge deformation.Since the accuracy of the GPS deformation monitoring reaches millimeter level,it was used to monitor the exact value of the bridge deformation to judge the reliability of numerical simulation.The relative errors of displacement in X,Y and Z directions were between 33%and 41%through comparison.It could be seen that the numerical simulation error was relatively large,which was mainly due to various environmental factors and the deviation of applied wave forces.However,numerical simulation generally reflects the deformation law of the sea-crossing bridge under complex wave forces,providing an effectively technical support for the safe operation assessment of the sea-crossing bridge.展开更多
Ethiopia has a mountainous landscape which can be divided into the Northwestern and Southeastern plateaus by the Main Ethiopian Rift and Afar Depression. Debre Sina area is located in Central Ethiopia along the escarp...Ethiopia has a mountainous landscape which can be divided into the Northwestern and Southeastern plateaus by the Main Ethiopian Rift and Afar Depression. Debre Sina area is located in Central Ethiopia along the escarpment where landslide problem is frequent due to steep slope, complex geology, rift tectonics, heavy rainfall and seismicity. In order to tackle this problem, preparing a landslide susceptibility map is very important. For this, GISbased frequency ratio(FR) and logistic regression(LR) models have been applied using landslide inventory and the nine landslide factors(i.e. lithology, land use, distance from river & fault, slope, aspect, elevation, curvature and annual rainfall). Database construction, weighting each factor classes or factors, preparing susceptibility map and validation were the major steps to be undertaken. Both models require a rasterized landslide inventory and landslide factor maps. The former was classified into training and validation landslides. Using FR model, weights for each factor classes were calculated and assigned so that all the weighted factor maps can be added to produce a landslide susceptibility map. In the case of LR model, the entire study area is firstly divided into landslide and non-landslide areas using the training landslides. Then, these areas are changed into landslide and non-landslide points so as to extract the FR maps of the nine landslide factors. Then a linear relationship is established between training landslides and landslide factors in SPSS. Based on this relationship, the final landslide susceptibility map is prepared using LR equation. The success-rate and prediction-rate of FR model were 74.8% and 73.5%, while in case of LR model these were 75.7% and 74.5% respectively. A close similarity in the prediction and validation rates showed that the model is acceptable. Accuracy of LR model is slightly better in predicting the landslide susceptibility of the area compared to FR model.展开更多
A new nonlinear integral transform of ocean wave spectra into Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) image spectra is described. ATI-SAR phase image spectra are calculated for various sea sta...A new nonlinear integral transform of ocean wave spectra into Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) image spectra is described. ATI-SAR phase image spectra are calculated for various sea states and radar configurations based on the nonlinear integral transform. The numerical simulations show that the slant range to velocity ratio (R/V), significant wave height to ocean wavelength ratio (Hi2), the baseline (2B) and incident angle (0) affect ATI-SAR imaging. The ATI-SAR imaging theory is validated by means of Two X-band, HH-polarized ATI-SAR phase images of ocean waves and eight C-band, HH-polarized ATI-SAR phase image spectra of ocean waves. It is shown that ATI-SAR phase image spectra are in agreement with those calculated by forward mapping in situ directional wave spectra collected simultaneously with available ATI-SAR observations. ATI-SAR spectral correlation coefficients between observed and simulated are greater than 0.6 and are not sensitive to the degree of nonlinearity. However, the ATI-SARoPhase image spectral turns towards the range direction, even if the real ocean wave direction is 30. It is also shown that the ATI-SAR imaging mechanism is significantly affected by the degree of velocity bunching nonlinearity, especially for high values of R/V and H/2.展开更多
Almost all works in the field of boundary layer flow under the breaking wave consider the flow similar as the flow in an oscillating pressure tube. Although the two flows are similar, there are many differences. The r...Almost all works in the field of boundary layer flow under the breaking wave consider the flow similar as the flow in an oscillating pressure tube. Although the two flows are similar, there are many differences. The results achieved in such manner are therefore also only similar to the results that can be achieved during measurements in the surf zone. Present article deals with boundary layer measurements on an inclined bottom under breaking waves. The measurements over the whole wave cycle were carried out, and the shear velocity under the breaking wave was calculated based on the measurements. It was found that there is a considerable space and time variation of the term in the surf zone. The turbulence generated during the wave breaking changes the shape of the shear velocity profile in comparison to the profile measured before breaking. As the values of shear velocity are directly correlated with the description of the whole velocity field in the wave, it can be assumed that the enhanced description of the shear velocity results in better understanding of the whole velocity field under breaking waves. Therefore, the article brings a new insight into the field and aims to make a discussion about the need to rethink the way of describing the boundary layer flow in the surf zone.展开更多
A two-dimensional, depth-integrated model proposed by Lynett and Liu (2002) was checked carefully, and several misprints in the model were corrected after detailed examination on both the theory and the numerical prog...A two-dimensional, depth-integrated model proposed by Lynett and Liu (2002) was checked carefully, and several misprints in the model were corrected after detailed examination on both the theory and the numerical program. Several comparisons were made on wave profile, system energy and maximum wave amplitude. It is noted that the modified model can simulate the propagation of the internal solitary waves over variable bathymetry more reasonably to a certain degree, and the wave pro-files obtained based on the modified model can better fit the experiment data reported by Helfrich (1992) than those from original model.展开更多
A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites...A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites,respectively,for calibration process in Zhangzi Island of the Yellow Sea,and for validation in the Yellow Sea and South China Sea.Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method.The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy.The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy.In particular,it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters,especially in detecting the significant wave height below 1.0 m.展开更多
A synoptic snapshot in this study is made for the East Cape Eddy (ECE) basedon the World Ocean Circulation Experiment (WOCE) P14C Hydrographic Section and Shipboard ADCPvelocity vector data collected in September 1992...A synoptic snapshot in this study is made for the East Cape Eddy (ECE) basedon the World Ocean Circulation Experiment (WOCE) P14C Hydrographic Section and Shipboard ADCPvelocity vector data collected in September 1992. The ECE is an anticyclonic eddy, barotropicallystructured and centered at 33.64°S and 176.21°E, with warm and salinous-cored subsurface water.The radius of the eddy is of the order O (110 km) and the maximum circumferential velocity is O (40cm s^(-1)); as a result, the relative vorticity is estimated to be O (7 x 10^(-6)s^(-1)). Due to theexistence of the ECE, the mixed layer north of New Zealand becomes deeper, reaching a depth of 300m in the austral winter. The ECE plays an important role in the formation and distribution of theSubtropical Mode Water (STMW) over a considerable area in the South Pacific.展开更多
In order to predict the speed loss in the actual sea states more precisely, delivered power shall be measured more accurately as an input. Therefore, based on a 50,000 DWT tanker, various results obtained from differe...In order to predict the speed loss in the actual sea states more precisely, delivered power shall be measured more accurately as an input. Therefore, based on a 50,000 DWT tanker, various results obtained from different prediction methods were compared by a series of model tests performed in calm water and in waves. It is shown that speed loss deprived from RTIM (resistance and thrust identity method) method in regular waves test could satisfy the engineering requirements most.展开更多
Shear wave velocity Vs is measured by the surface geophysical survey like MASW (multi-channel surface wave analysis) or RWM (refraction wave method) and by the subsurface method like PS logging. PS logging and RWM...Shear wave velocity Vs is measured by the surface geophysical survey like MASW (multi-channel surface wave analysis) or RWM (refraction wave method) and by the subsurface method like PS logging. PS logging and RWM are direct methods to derive shear wave velocity and MASW retrieves shear wave through the inversion of the surface wave. In this work, the effectiveness of surface methods (MASW and RWM) is compared with PS logging in determining shear wave velocity. For this purpose, shear wave velocity results Vs30 of 12 PS logging and MASW surveys conducted in Mymensingh Municipality in Bangladesh have been utilized. Additionally, the shear wave velocity results of three PS logging have been compared with the refraction profiles of RWM survey conducted in Rooppur nuclear power plant site in Bangladesh. The relative discrepancy between RWM and PS logging is found less (ranges from -3.92 to 0.93) compared to MASW and PS logging (+/-0.88 to 33.92). The correlation coefficient of Vs30 derived from RWM and PS logging is observed much better (0.60) compared to MASW and PS logging (0.40). The result is good considering the lateral lithologic variability and inherent differences among techniques. It is evident from the comparison that the RWM can be used as a cost-effective alternative to traditional borehole PS logging method for Vs30 determination and thus the number of down-hole logging tests might be significantly reduced.展开更多
Non-destructive measurement of absolute stress in steel members can provide useful information to optimize the design of steel structures and allow the safety of existing structures to be evaluated.This paper investig...Non-destructive measurement of absolute stress in steel members can provide useful information to optimize the design of steel structures and allow the safety of existing structures to be evaluated.This paper investigates the non-destructive capability of ultrasonic shear-wave spectroscopy in absolute stress evaluation of steel members.The effect of steel-member stress on the shear-wave amplitude spectrum is investigated,and a method of absolute stress measurement is proposed.Specifically,the process for evaluating absolute stress using shear-wave spectroscopy is summarized.Two steel members are employed to investigate the relationship between the stress and the frequency in shear-wave echo amplitude spectrum.The H-beam loaded by the universal testing machine is evaluated by the proposed method and the traditional strain gauge method for verification.The results show that the proposed method is effective and accurate for determining absolute stress in steel members.展开更多
This paper presents a constructive design of new controllers that force underactuated ships under constant or slow time-varying sea loads to asymptotically track a parameterized reference path, that guarantees the dis...This paper presents a constructive design of new controllers that force underactuated ships under constant or slow time-varying sea loads to asymptotically track a parameterized reference path, that guarantees the distance from the ship to the reference path always be within a specified value. The control design is based on a global exponential disturbance observer, a transformation of the ship dynamics to an almost spherical form, an interpretation of the tracking errors in an earth-fixed frame, an introduction of dynamic variables to compensate for relaxation of the reference path generation, p-times differentiable step functions, and backstepping and Lyapunov's direct methods. The effectiveness of the proposed results is illustrated through simulations.展开更多
基金supported by the Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology(MRE201233)Key Laboratory of Surveying and Mapping Technology on Island and ReefState Bureau of Surveying and Mapping(2012B04)
文摘This paper analyzed the existing methods of wave measurement, and described the advantages of GPS applied in measuring the wave. The equations of absolute velocity estimation were discussed, focusing on two methods with Doppler shill. The error sources and their effect on velocity estimation were analyzed. Then, some tests were carried on to simulate dynamic velocity determination using static data Based on the high-frequency carrier-phase derived Doppler observations, the velocity has been estimated to the precision of 1 cm/s or so, even to the mm/s level. And with the receiver generated Doppler measurements, the precision can reach 3 - 15 cm/s.
基金Supported by the Natural Science Foundation of Tianjin(No.15JCYBJC15500)
文摘Most existing methods for image copy-move forgery detection(CMFD)operate on grayscale images. Although the keypoint-based methods have the advantages of strong robustness and low computational cost,they cannot identify the flat duplicated regions without reliable extracted features. In this paper, we propose a new CMFD method by using speeded-up robust feature(SURF)in the opponent color space. Our method starts by converting the inspected image from RGB to the opponent color space. The color gradient per pixel is calculated and taken as the work space for SURF to extract the keypoints. The matched keypoints are clustered and their geometric transformations are estimated. Finally, the false matches are removed. Experimental results show that the proposed technique can effectively expose the duplicated regions with various transformations, even when the duplication regions are flat.
基金Supported by the High-Tech Research and Development Program of China (863 Program, No. 2001AA633070 2003AA604040)the National Natural Science Foundation of China (No. 40476008).
文摘For validating the results of retrieved mean wave period, four empirical algorithms established previously are introduced. Based on the data of over five years derived from TOPEX satellite altimeter for the entire East China Sea, ocean wave periods were calculated and statistical comparison among them was performed. The retrieved mean wave period 〈T〉 obtained with our new distribution parameters showed better agreement with the wave period TB measured by buoy than that calculated by other three algorithms. The difference between the mean values of 〈T〉 and that of TB is 0.16 s and the RMSE (root mean square error) of 〈T〉 is the lowest value (0.48).
基金supported by the National Basic Research Program of China (973 Program) (Grant No.2009CB421406)the National Key Technologies R&D Program of China (Grant No.2007BAC29B03)the The National Natural Science Foundation of China Project (Grant No.40821092)
文摘This study examined wintertime (November-April) cold wave frequency (CWF) in northern China during the last 42 years and its association with Arctic Oscillation (AO) through analysis of daily mean surface temperature from 280 stations across northern China and European Centre for Medium-Range Weather Forecasts (ECMWF) 40-Year Re-analysis ERA-40 data. The leading empirical orthogonal function EOF mode of wintertime CWF (CWF-EOF1) indicates an identical signal over most northern China, with the characteristic trend of linear decline for the leading principal component (CWF-PC1). After the linear trend is removed, remarkable inter-annual variability is found to be the dominant feature of the CWF-PC1. The regression map for sea level pressure based on CWF-PC1 corresponds to the negative phase of AO. Correlation analysis further proves that CWF-PC1 has a significant negative correlation with AO at the inter-annual time scale. The relationship between AO and global surface air temperature is also investigated in order to understand its association with cold air activity over East Asia, and it is suggested that the anomalies of atmospheric circulation in Siberia may serve as a bridge for interaction between AO and CWF in northern China during wintertime.
基金Supported by the High-Tech Research and Development Program of China (863 Program, No. 2001AA633070 2003AA604040)OceanScience Foundation for the Youth of State Oceanic Administration of
文摘Altimeter wave period data obtained from continental shelf seas are analyzed in this paper. Empirical models are introduced for zero up-crossing and peak wave period calculation with TOPEX/POSEIDON data. Their performances are assessed using independent validation dataset in four sites in the open ocean of China. To provide more accurate wave period estimation, new coefficients are applied to reliable in situ data. Comparison of our estimated the wave periods with new linear calibrations based on independent data of Seapac 2100 deployed in the East China Sea and South China Sea showed that the accuracy was improved over estimates determined from earlier empirical models. Regional analysis indicated that the wave period model works better under wind sea condition.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA122803)the Special Funds for Marine Commonweal Research(No.201305032)the ESA-MOST Dragon 3 Cooperation Program(No.10466)
文摘Using the wave model WAVEWATCH III(WW3), we simulated the generation and propagation of typhoon waves in the South China Sea and adjacent areas during the passage of typhoon Nesat(2011). In the domain 100°–145°E and 0°–35°N, the model was forced by the cross-calibrated multi-platform(CCMP) wind fi elds of September 15 to October 5, 2011. We then validated the simulation results against wave radar data observed from an oil platform and altimeter data from the Jason-2 satellite. The simulated waves were characterized by fi ve points along track using the Spectrum Integration Method(SIM) and the Spectrum Partitioning Method(SPM), by which wind sea and swell components of the 1D and 2D wave spectra are separated. There was reasonable agreement between the model results and observations, although the WW3 wave model may underestimate swell wave height. Signifi cant wave heights are large along the typhoon track and are noticeably greater on the right of the track than on the left. Swells from the east are largely unable to enter the South China Sea because of the obstruction due to the Philippine Islands. During the initial stage and later period of the typhoon, swells at the fi ve points were generated by the propagation of waves that were created by typhoons Haitang and Nalgae. Of the two methods, the 2D SPM method is more accurate than the 1D SIM which overestimates the separation frequency under low winds, but the SIM method is more convenient because it does not require wind speed and wave direction. When the typhoon left the area, the wind sea fractions decreased rapidly. Under similar wind conditions, the points located in the South China Sea are affected less than those points situated in the open sea because of the infl uence of the complex internal topography of the South China Sea. The results reveal the characteristic wind sea and swell features of the South China Sea and adjacent areas in response to typhoon Nesat, and provide a reference for swell forecasting and offshore structural designs.
基金Supported by the High-Tech Research and Development Program of China (863 Program, No, 2001AA633070 2003AA604040)the National Natural Science Foundation of China (No. 40476015).
文摘The multi-scale characteristics of wave significant height (Hs) in eastern China seas were revealed by multi-scale wavelet analysis. In order to understand the relation between wave and wind, the TOPEX/Poseidon measurements of Hs and wind speed were analyzed. The result showed that Hs and wind speed change in multi-scale at one-, two-month, half-, one- and two-year cycles. But in a larger time scale, the variations in Hs and wind speed are different. Hs has a five-year cycle similar to the cycle of ENSO variation, while the wind speed has no such cycle. In the time domain, the correlation between Hs and ENSO is unclear.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2020MD024)。
文摘To study on the numerical simulation calculation reliability of sea-crossing bridge under complex wave forces,the paper applied GPS deformation monitoring and numerical simulation calculation by researching Qingdao Jiaozhou Bay Sea-Crossing Bridge.The db3 wavelet three-layer decomposition was used on the horizontal movement of the sea-crossing bridge and the wind speed of the waves to analyze their correlation.The complex wave forces value of Qingdao Jiaozhou Bay Sea-Crossing Bridge was loaded on FLAC3D software successfully to make numerical simulation calculation of bridge deformation.Since the accuracy of the GPS deformation monitoring reaches millimeter level,it was used to monitor the exact value of the bridge deformation to judge the reliability of numerical simulation.The relative errors of displacement in X,Y and Z directions were between 33%and 41%through comparison.It could be seen that the numerical simulation error was relatively large,which was mainly due to various environmental factors and the deviation of applied wave forces.However,numerical simulation generally reflects the deformation law of the sea-crossing bridge under complex wave forces,providing an effectively technical support for the safe operation assessment of the sea-crossing bridge.
文摘Ethiopia has a mountainous landscape which can be divided into the Northwestern and Southeastern plateaus by the Main Ethiopian Rift and Afar Depression. Debre Sina area is located in Central Ethiopia along the escarpment where landslide problem is frequent due to steep slope, complex geology, rift tectonics, heavy rainfall and seismicity. In order to tackle this problem, preparing a landslide susceptibility map is very important. For this, GISbased frequency ratio(FR) and logistic regression(LR) models have been applied using landslide inventory and the nine landslide factors(i.e. lithology, land use, distance from river & fault, slope, aspect, elevation, curvature and annual rainfall). Database construction, weighting each factor classes or factors, preparing susceptibility map and validation were the major steps to be undertaken. Both models require a rasterized landslide inventory and landslide factor maps. The former was classified into training and validation landslides. Using FR model, weights for each factor classes were calculated and assigned so that all the weighted factor maps can be added to produce a landslide susceptibility map. In the case of LR model, the entire study area is firstly divided into landslide and non-landslide areas using the training landslides. Then, these areas are changed into landslide and non-landslide points so as to extract the FR maps of the nine landslide factors. Then a linear relationship is established between training landslides and landslide factors in SPSS. Based on this relationship, the final landslide susceptibility map is prepared using LR equation. The success-rate and prediction-rate of FR model were 74.8% and 73.5%, while in case of LR model these were 75.7% and 74.5% respectively. A close similarity in the prediction and validation rates showed that the model is acceptable. Accuracy of LR model is slightly better in predicting the landslide susceptibility of the area compared to FR model.
基金Supported by National Natural Science Foundation of China(No.40276050)
文摘A new nonlinear integral transform of ocean wave spectra into Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) image spectra is described. ATI-SAR phase image spectra are calculated for various sea states and radar configurations based on the nonlinear integral transform. The numerical simulations show that the slant range to velocity ratio (R/V), significant wave height to ocean wavelength ratio (Hi2), the baseline (2B) and incident angle (0) affect ATI-SAR imaging. The ATI-SAR imaging theory is validated by means of Two X-band, HH-polarized ATI-SAR phase images of ocean waves and eight C-band, HH-polarized ATI-SAR phase image spectra of ocean waves. It is shown that ATI-SAR phase image spectra are in agreement with those calculated by forward mapping in situ directional wave spectra collected simultaneously with available ATI-SAR observations. ATI-SAR spectral correlation coefficients between observed and simulated are greater than 0.6 and are not sensitive to the degree of nonlinearity. However, the ATI-SARoPhase image spectral turns towards the range direction, even if the real ocean wave direction is 30. It is also shown that the ATI-SAR imaging mechanism is significantly affected by the degree of velocity bunching nonlinearity, especially for high values of R/V and H/2.
文摘Almost all works in the field of boundary layer flow under the breaking wave consider the flow similar as the flow in an oscillating pressure tube. Although the two flows are similar, there are many differences. The results achieved in such manner are therefore also only similar to the results that can be achieved during measurements in the surf zone. Present article deals with boundary layer measurements on an inclined bottom under breaking waves. The measurements over the whole wave cycle were carried out, and the shear velocity under the breaking wave was calculated based on the measurements. It was found that there is a considerable space and time variation of the term in the surf zone. The turbulence generated during the wave breaking changes the shape of the shear velocity profile in comparison to the profile measured before breaking. As the values of shear velocity are directly correlated with the description of the whole velocity field in the wave, it can be assumed that the enhanced description of the shear velocity results in better understanding of the whole velocity field under breaking waves. Therefore, the article brings a new insight into the field and aims to make a discussion about the need to rethink the way of describing the boundary layer flow in the surf zone.
基金Sponsored by Knowledge Innovation Program of Chinese Academy of Sciences (CAS) and the project under the corporation of Institute of Oceanology, CAS and the China National Offshore Oil Corporation
文摘A two-dimensional, depth-integrated model proposed by Lynett and Liu (2002) was checked carefully, and several misprints in the model were corrected after detailed examination on both the theory and the numerical program. Several comparisons were made on wave profile, system energy and maximum wave amplitude. It is noted that the modified model can simulate the propagation of the internal solitary waves over variable bathymetry more reasonably to a certain degree, and the wave pro-files obtained based on the modified model can better fit the experiment data reported by Helfrich (1992) than those from original model.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Nos.KZCX1-YW-12-04,KZCX2-YW-201)the Instrument Developing Project of the Chinese Academy of Sciences (No.YZ200724)
文摘A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites,respectively,for calibration process in Zhangzi Island of the Yellow Sea,and for validation in the Yellow Sea and South China Sea.Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method.The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy.The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy.In particular,it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters,especially in detecting the significant wave height below 1.0 m.
文摘A synoptic snapshot in this study is made for the East Cape Eddy (ECE) basedon the World Ocean Circulation Experiment (WOCE) P14C Hydrographic Section and Shipboard ADCPvelocity vector data collected in September 1992. The ECE is an anticyclonic eddy, barotropicallystructured and centered at 33.64°S and 176.21°E, with warm and salinous-cored subsurface water.The radius of the eddy is of the order O (110 km) and the maximum circumferential velocity is O (40cm s^(-1)); as a result, the relative vorticity is estimated to be O (7 x 10^(-6)s^(-1)). Due to theexistence of the ECE, the mixed layer north of New Zealand becomes deeper, reaching a depth of 300m in the austral winter. The ECE plays an important role in the formation and distribution of theSubtropical Mode Water (STMW) over a considerable area in the South Pacific.
文摘In order to predict the speed loss in the actual sea states more precisely, delivered power shall be measured more accurately as an input. Therefore, based on a 50,000 DWT tanker, various results obtained from different prediction methods were compared by a series of model tests performed in calm water and in waves. It is shown that speed loss deprived from RTIM (resistance and thrust identity method) method in regular waves test could satisfy the engineering requirements most.
文摘Shear wave velocity Vs is measured by the surface geophysical survey like MASW (multi-channel surface wave analysis) or RWM (refraction wave method) and by the subsurface method like PS logging. PS logging and RWM are direct methods to derive shear wave velocity and MASW retrieves shear wave through the inversion of the surface wave. In this work, the effectiveness of surface methods (MASW and RWM) is compared with PS logging in determining shear wave velocity. For this purpose, shear wave velocity results Vs30 of 12 PS logging and MASW surveys conducted in Mymensingh Municipality in Bangladesh have been utilized. Additionally, the shear wave velocity results of three PS logging have been compared with the refraction profiles of RWM survey conducted in Rooppur nuclear power plant site in Bangladesh. The relative discrepancy between RWM and PS logging is found less (ranges from -3.92 to 0.93) compared to MASW and PS logging (+/-0.88 to 33.92). The correlation coefficient of Vs30 derived from RWM and PS logging is observed much better (0.60) compared to MASW and PS logging (0.40). The result is good considering the lateral lithologic variability and inherent differences among techniques. It is evident from the comparison that the RWM can be used as a cost-effective alternative to traditional borehole PS logging method for Vs30 determination and thus the number of down-hole logging tests might be significantly reduced.
基金supported by the National Key Research and Development Program of China (No. 2016YFC0701102)the National Nature Science Foundation of China(No.51538003)the Shenzhen Technology Innovation Program (No.JSGG20150330103937411)
文摘Non-destructive measurement of absolute stress in steel members can provide useful information to optimize the design of steel structures and allow the safety of existing structures to be evaluated.This paper investigates the non-destructive capability of ultrasonic shear-wave spectroscopy in absolute stress evaluation of steel members.The effect of steel-member stress on the shear-wave amplitude spectrum is investigated,and a method of absolute stress measurement is proposed.Specifically,the process for evaluating absolute stress using shear-wave spectroscopy is summarized.Two steel members are employed to investigate the relationship between the stress and the frequency in shear-wave echo amplitude spectrum.The H-beam loaded by the universal testing machine is evaluated by the proposed method and the traditional strain gauge method for verification.The results show that the proposed method is effective and accurate for determining absolute stress in steel members.
基金Supported in Part by the Australian Research Council Under Grant No.DP0988424
文摘This paper presents a constructive design of new controllers that force underactuated ships under constant or slow time-varying sea loads to asymptotically track a parameterized reference path, that guarantees the distance from the ship to the reference path always be within a specified value. The control design is based on a global exponential disturbance observer, a transformation of the ship dynamics to an almost spherical form, an interpretation of the tracking errors in an earth-fixed frame, an introduction of dynamic variables to compensate for relaxation of the reference path generation, p-times differentiable step functions, and backstepping and Lyapunov's direct methods. The effectiveness of the proposed results is illustrated through simulations.