Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the...Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.展开更多
Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base o...Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base oil and other components were carried out to develop the SK and SD series of rolling oils for cold rolling of stainless steel.The developed oils were used in the stainless steel cold rolling lubrication experiments,and were successfully applied in the actual cold rolling operation of stainless steel.Compared with a foreign product,the tribological properties,the thermal oxidation stability,and the rolling lubrication performance of the developed stainless steel cold rolling oils were studied.Test results showed that the tribological properties of the thereby developed rolling oils and the reference one were almost at the same level,and to some extent the performance of rolling was even better than the foreign product,at the same time the stainless steel sheet could retain its well annealed performance.Meanwhile,within a certain range,the lubrication of the rolling oil became better as its viscosity increased at the same level of saponification value,which could provide a lower friction coefficient,so that a higher maximum reduction ratio of the rolled piece through a constant roll gap and a minimum thickness could be secured.Also,similar phenomena appeared as the saponification value increased at a same viscosity level of the rolling oils.展开更多
An improved test rig providing both the heat and cold source was used to perform thermal response test (TRT), and the line source model was used for data analysis. The principle of determining the temperature differ...An improved test rig providing both the heat and cold source was used to perform thermal response test (TRT), and the line source model was used for data analysis. The principle of determining the temperature difference between the inlet and outlet of test well can keep the heating or cooling rate constant, along with a reduced size of test rig. Among the influencial factors of the line source model, the temperature difference was determined as the most important, which agreed with the test results. When the gravel was taken as the backfill material, the soil thermal conductivities of heating and cooling at the test place were 1.883 W/(m·K) and 1.754 W/(m·K), respectively, and the deviation of TRT between heating and cooling soil was 6.8%. In the case of fine sand, the thermal conductivities of heating and cooling were 1.541 W/(m·K) and 1.486 W/(m·K), respectively, and the corresponding deviation was 6%. It was also concluded that different velocities of water had less influence on TRT than the temperature difference.展开更多
Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analy...Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analyzes the condition and mechanism of ammonia corrosion occurring in copper tube used in coal-fired power plants. Using a general steam condensation testing equipment only for horizontal single tube, with water vapor and water as working fluid, on two types of steel tube with 2-side enhancement heat transfer, namely, a spirally fluted tube and a ratchet tube with internal spiral groove (RISG tube) which was developed recently, a set of experimental tests are conducted to investigate the characteristics of heat transfer and hydromeehanics. In order to compare easily, both one copper smooth tube and one steel smooth tube are also used in the experiment. The experimental results, which get from single horizontal tube, show that the overall heat transfer coefficient of steel spirally fluted tube are improved by 10%o to 17%, and that of the steel RISG tube(22%-28%) is better than steel spirally fluted tube, its flow resistance coefficient is only increased by 22% to 66% when compared with smooth tube. Based on a lot of experimental data, the steel spirally fluted tube and the steel RISG tube were applied in a low pressure preheater and an oil-cooler of some or other power plant respectively. The field testing results showed that their heat transfer coefficient with each types of enhancement heat transfer tubes were improved by 2.5% and 21%-45% comparing with copper smooth tube heat exchangers. Both basic and field experiment indicates that the steel tube with 2-side enhancement heat transfer is an ideal choice for heat exchanger reconstruction in no copper issue in power plants.展开更多
Flue gases exhausted from thermal power plants contain more than 50% of the fuel thermal energy. In the present work, experimental investigation was carried out to study the utilization of thermal energy in flue gases...Flue gases exhausted from thermal power plants contain more than 50% of the fuel thermal energy. In the present work, experimental investigation was carried out to study the utilization of thermal energy in flue gases to enhance the performance of modified solar chimney consisting of Savonius wind rotor. A modified solar chimney model was designed and fabricated to carry out experimental measurement. The model consists of thermal energy conversion unit; Savonius wind rotor and a chimney. The thermal energy in the flue gas transfers to the air particles in the air channel across the absorber plate and results in upward air stream due to the buoyancy effect. With an 9 absorber area of 2.36 re'and flue gas mass flow rate of0.18 kg/s, air velocity' of 4.1 m/s was achieved at the top of the thermal unit. Increasing the mass flow rate of the flue gas to 0.24 kg/s enhances the air velocity to be 4.6 m/s. The results have demonstrated the possibility' of utilizing the thermal energy in the waste flue gas to enhance the performance of a solar chimney and facilitate the continuous operation during the absence of the sun.展开更多
Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment s...Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment simulation testing facility. It can simuhaneously and dynamically simulate temperature, relative humidity, infrared solar radiation, UV radiation, and precipitation. A transformation is needed to predict the energy and long-term hygrothermal performance of building enclosures under real service conditions using data obtained from accelerated tests.展开更多
China, as one of the members of ITER (international thermonuclear experimental reactor) project, one of the most important construction tasks is the fabrication of the first wall panel and shield blankets, which is ...China, as one of the members of ITER (international thermonuclear experimental reactor) project, one of the most important construction tasks is the fabrication of the first wall panel and shield blankets, which is the key engineering technology of ITER construction and might be one of the crucial issues of the future reactor too. Since 2004, an associated research team including Southwestern Institute of Physics ( SWIP ), Ninxia Non-ferrous Metal Co. Itd and Chinese Institute of Engineering Physics, as well as Nuclear Power Institute of China has been established. Up to now, several series of interlayer for hot isostatic press ( HIP ) connection of beryllium and CuCrZr alloy have been tested. They are titanium film or coating, Cu coating and Al or AISiMg alloy etc. The bonding strength (tensile or shear strength ) of HIPed Be/Cu joints is up to 100 MPa.展开更多
To prevent direct contact of the melt and basemat concrete of the cavity in a postulated core melt accident, a core catcher concept is suggested. Upon ablation of the sacrificial layer on top of the core catcher while...To prevent direct contact of the melt and basemat concrete of the cavity in a postulated core melt accident, a core catcher concept is suggested. Upon ablation of the sacrificial layer on top of the core catcher while molten core material is discharged, a mixture of water and gas is injected from below. It is expected that a simultaneous injection of water and gas could prevent a possible steam explosion/spike and also suppress the rapid release of steam which might result in fast over-pressurization of the containment. A test facility for the core catcher using a thermite reaction technique for the generation of the melt was designed and constructed at Korea Atomic Energy Research Institute (KAERI). The first series of tests were performed by using a mixture of Al, Fe2O3, and CaO as a stimulant. As a first try, only water was injected from the bottom of the melt through five water injection nozzles when the melt front reached the water injection nozzles. A description of the test facility for the core catcher, the thermite composition, and the methods of experiment is included. The test results are discussed.展开更多
The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-a...The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-air interfacial thermal resistance were reviewed especially. In the distribution of thermal resistance, the rank of the thermal resistance proportion (from max to min) is air flow heat transfer resistance, heat transfer resistance between refrigerant and wall, water film convection resistance and wall heat transfer resistance. When the heat flux is constant, the total resistance lowers nearly along with the increasing of air flow and water spray density. But there are a best air flow value of 2.98 m/s and a best spray water density of 0.064 kg/(m ·s) respectively, if continue to increase them, condensation performance is not significantly improved any more. The test results are available to improve the evaporative condenser performance and the designing lever.展开更多
The performance of a BTES (borehole thermal energy storage) system is primarily governed by ground heat flux, soil thermal properties and groundwater conditions. However, the design of the heat exchanger used within...The performance of a BTES (borehole thermal energy storage) system is primarily governed by ground heat flux, soil thermal properties and groundwater conditions. However, the design of the heat exchanger used within the BTES system can also make a significant difference in the efficiency of the system. A thermal response test was carded out for a Kelix GHE (ground heat exchanger) system, the latest innovation in geothermal ground loop construction, on an Ecofarm in the town of Caledon East, Ontario, Canada. In addition, a verifying test was performed for a CEES (conventional earth energy system) located 6 m away from the Kelix GHE. The boreholes for these two different heat exchanger designs were drilled with the same diameter, to the same depth and were located in the same/identical geo-hydrological conditions. The response test provided the effective average of undisturbed ground temperature, geothermal properties including thermal conductivity, heat capacity and thermal resistance between the fluid and the borehole wall. The mathematical analysis method used for the response test is presented here. Results of the response test were verified, analyzed and are further discussed.展开更多
This study is aimed at the thermal analysis of sealant mortar (usually a mixtures of bentonite and cemem with addition of sand) used in geothermal cooling and heating. In particular, thermal conductivity and diffusi...This study is aimed at the thermal analysis of sealant mortar (usually a mixtures of bentonite and cemem with addition of sand) used in geothermal cooling and heating. In particular, thermal conductivity and diffusivity measurements were performed on differem sealant mixtures by using Hot Disk thermal constants analyzer in order to identify the interesting thermal properties of grouting materials. The grouting materials that we considered are of porous nature and, if used in the presence of groundwater, have different levels of imbibitions. It is important to know the thermal behavior of these materials at different water content. A first set of measurements was performed on a not-tinted material at room temperature; then the samples were led to saturation conditions by contact capillary imbibitions with a cotton wool layer moistened in water. The determination of thermal conductivity in these test conditions appears to be critical compared to the measuremems on non-timed sample. The thermal conductivity tests have revealed how the thermal behavior of the samples analyzed is essentially determined by the density and water content of the material: in fact, the thermal conductivity increases of two to three times the value of the not-tinted material.展开更多
Though TES (thermal energy storage) is developed hugely in most of the solar power generation plants, it is less growth in implementing a modular type of TES in a solar plant, e.g., solar dish/stifling engine applic...Though TES (thermal energy storage) is developed hugely in most of the solar power generation plants, it is less growth in implementing a modular type of TES in a solar plant, e.g., solar dish/stifling engine application. The main issue in designing the TES system is its thermal capacity of storage materials, e.g., insulator. This study is focusing on the potential waste material as an insulator for thermal energy storage applications. The insulator usage is to reduce the heat transfer between two mediums and the capability is measured by its resistance to heat flow. It is needed to obtain optimal materials to energy conversion at the same time reduce the waste generation. Therefore, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room without any forced cooling system, e.g., fan. The testing is repeated by changing the insulator using the potential waste material from natural and industrial waste and also by changing the HTF (heat transfer fluid). The analysis is performed on the relationship between heat loss and the reserved period by the insulator. The results indicate the percentage of period of the insulated tank withstands the heat compared to non-insulated tank, e.g., cotton reserved the period of 14% more than non-insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator in different heat transfer fluids.展开更多
N2O represents a popular oxidizer for hybrid rocket motors for a variety of reasons, including safety, ease of access and self-pressurization. It is often used as a saturated two-phase fluid in these applications to t...N2O represents a popular oxidizer for hybrid rocket motors for a variety of reasons, including safety, ease of access and self-pressurization. It is often used as a saturated two-phase fluid in these applications to take advantage of self-pressurization. Recent interest in using this oxidizer in regeneratively cooled engines requires a detailed heat transfer process analysis to the coolant, in order to quantify performance. Since the injection of N2O typically takes place in the two-phase region, our study focuses on heat transfer rates in this region, and extends the region to include superheated vapor. This analysis is critical for these cooling applications, because the exothermic decomposition nature of N2O also means that unchecked heating in the superheated region may result in a runaway reaction in the cooling passages. Furthermore, provided that sufficient heat transfer rates are available, N2O is expected to accelerate in the cooling passages due to Rayleigh flow effects much like those of a calorically perfect gas. The proximity of superheated N2O to its saturated vapor curve, at the conditions studied here, makes the suitability of a perfect gas model questionable, but that benchmarks is still useful. This paper presents the development of an experimental apparatus (a "Rayleigh tube"), specifically designed to study this problem, and test the analytical methods developed to model it. Since we focus on the development of the apparatus, the data presented were uses primarily calorically perfect gas surrogates, but the goal is to apply the apparatus and method to N2O. The design and construction of the Rayleigh tube is presented, along with preliminary results with perfect gases. Finally, we present preliminary results on heated N2O flow. Using a simple model for predicted dry-out point, we investigate where superheating may be expected to occur. We present estimates of critical heating and compare them to the heat required to achieve self-decomposition.展开更多
The film cooling performance of chevron holes with different inclination angles and exit lateral diffusion angles has been studied experimentally and numerically. The inclination angles include 35° and 55°. ...The film cooling performance of chevron holes with different inclination angles and exit lateral diffusion angles has been studied experimentally and numerically. The inclination angles include 35° and 55°. The exit lateral diffusion angles include 20° and 25°. The film cooling effectiveness, heat transfer coefficient and discharge coefficient were measured on a flat plate model by transient liquid crystal measurement technique under four blowing ratios. The results show that the large inclination angle reduces the film cooling effectiveness. The influence of diffusion angle has two aspects: the large diffusion angle leads to mainstream ingestion and decreases film cooling effectiveness at M=1.0 and 1.5; however, the large diffusion angle increases the film cooling effectiveness at high blowing ratio of 2.0, because the larger hole exit area decreases the normal momentum component of the film jet. The large inclination angle decreases the heat transfer coefficient in the right downstream region at M=0.5 and 1.0. The large diffusion angle enhances the heat transfer in the right downstream of the holes in M=0.5~1.5 conditions. The chevron hole with large inclination angle generally has the highest discharge coefficient.展开更多
Microchannel heat sinks constitute an innovative cooling technology for the removal of a large amount of heat from a small area and are suitable for electronics cooling.In the present work,Tool Steel D2 grade milling ...Microchannel heat sinks constitute an innovative cooling technology for the removal of a large amount of heat from a small area and are suitable for electronics cooling.In the present work,Tool Steel D2 grade milling slitting saw type plain milling cutter is fabricated The microchannels are machined in aluminum work pieces to form the microchannel heat sink using the fabricated milling cutter in an horizontal milling machine.A new experimental set-up is fabricated to conduct the tests on the microchannel heat sink.The heat carried by the water increases with mass flow rate and heat input.The heat transfer coefficient and Nusselt number increases with mass flow rate and increased heat input.The pressure drop increases with Reynolds number and decreases with input heat.The friction factor decreases with Reynolds number and decreases with input heat.The thermal resistance decreases with pumping power and decreases with input heat.展开更多
基金Project(xjj20100078) supported by the Fundamental Research Funds for the Central Universities in China
文摘Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.
文摘Appropriate base oils and homologous additives such as extreme pressure and anti-wear agents,oiliness agents and antioxidants were selected,and experiments testing the compatibility performance between additive,base oil and other components were carried out to develop the SK and SD series of rolling oils for cold rolling of stainless steel.The developed oils were used in the stainless steel cold rolling lubrication experiments,and were successfully applied in the actual cold rolling operation of stainless steel.Compared with a foreign product,the tribological properties,the thermal oxidation stability,and the rolling lubrication performance of the developed stainless steel cold rolling oils were studied.Test results showed that the tribological properties of the thereby developed rolling oils and the reference one were almost at the same level,and to some extent the performance of rolling was even better than the foreign product,at the same time the stainless steel sheet could retain its well annealed performance.Meanwhile,within a certain range,the lubrication of the rolling oil became better as its viscosity increased at the same level of saponification value,which could provide a lower friction coefficient,so that a higher maximum reduction ratio of the rolled piece through a constant roll gap and a minimum thickness could be secured.Also,similar phenomena appeared as the saponification value increased at a same viscosity level of the rolling oils.
基金Supported by the National Natural Science Foundation of China(No.41272263)
文摘An improved test rig providing both the heat and cold source was used to perform thermal response test (TRT), and the line source model was used for data analysis. The principle of determining the temperature difference between the inlet and outlet of test well can keep the heating or cooling rate constant, along with a reduced size of test rig. Among the influencial factors of the line source model, the temperature difference was determined as the most important, which agreed with the test results. When the gravel was taken as the backfill material, the soil thermal conductivities of heating and cooling at the test place were 1.883 W/(m·K) and 1.754 W/(m·K), respectively, and the deviation of TRT between heating and cooling soil was 6.8%. In the case of fine sand, the thermal conductivities of heating and cooling were 1.541 W/(m·K) and 1.486 W/(m·K), respectively, and the corresponding deviation was 6%. It was also concluded that different velocities of water had less influence on TRT than the temperature difference.
文摘Ammonia corrosion in copper tube will affect the safety of boiler running in power plant. Therefore, no copper in heating system has become a technical orientation in heat exchanger reconstruction, This paper analyzes the condition and mechanism of ammonia corrosion occurring in copper tube used in coal-fired power plants. Using a general steam condensation testing equipment only for horizontal single tube, with water vapor and water as working fluid, on two types of steel tube with 2-side enhancement heat transfer, namely, a spirally fluted tube and a ratchet tube with internal spiral groove (RISG tube) which was developed recently, a set of experimental tests are conducted to investigate the characteristics of heat transfer and hydromeehanics. In order to compare easily, both one copper smooth tube and one steel smooth tube are also used in the experiment. The experimental results, which get from single horizontal tube, show that the overall heat transfer coefficient of steel spirally fluted tube are improved by 10%o to 17%, and that of the steel RISG tube(22%-28%) is better than steel spirally fluted tube, its flow resistance coefficient is only increased by 22% to 66% when compared with smooth tube. Based on a lot of experimental data, the steel spirally fluted tube and the steel RISG tube were applied in a low pressure preheater and an oil-cooler of some or other power plant respectively. The field testing results showed that their heat transfer coefficient with each types of enhancement heat transfer tubes were improved by 2.5% and 21%-45% comparing with copper smooth tube heat exchangers. Both basic and field experiment indicates that the steel tube with 2-side enhancement heat transfer is an ideal choice for heat exchanger reconstruction in no copper issue in power plants.
文摘Flue gases exhausted from thermal power plants contain more than 50% of the fuel thermal energy. In the present work, experimental investigation was carried out to study the utilization of thermal energy in flue gases to enhance the performance of modified solar chimney consisting of Savonius wind rotor. A modified solar chimney model was designed and fabricated to carry out experimental measurement. The model consists of thermal energy conversion unit; Savonius wind rotor and a chimney. The thermal energy in the flue gas transfers to the air particles in the air channel across the absorber plate and results in upward air stream due to the buoyancy effect. With an 9 absorber area of 2.36 re'and flue gas mass flow rate of0.18 kg/s, air velocity' of 4.1 m/s was achieved at the top of the thermal unit. Increasing the mass flow rate of the flue gas to 0.24 kg/s enhances the air velocity to be 4.6 m/s. The results have demonstrated the possibility' of utilizing the thermal energy in the waste flue gas to enhance the performance of a solar chimney and facilitate the continuous operation during the absence of the sun.
基金supported by the Ministry of Science and Technology of China(2006BAJ04A01 and 2006BAJ03A04-01)
文摘Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment simulation testing facility. It can simuhaneously and dynamically simulate temperature, relative humidity, infrared solar radiation, UV radiation, and precipitation. A transformation is needed to predict the energy and long-term hygrothermal performance of building enclosures under real service conditions using data obtained from accelerated tests.
文摘China, as one of the members of ITER (international thermonuclear experimental reactor) project, one of the most important construction tasks is the fabrication of the first wall panel and shield blankets, which is the key engineering technology of ITER construction and might be one of the crucial issues of the future reactor too. Since 2004, an associated research team including Southwestern Institute of Physics ( SWIP ), Ninxia Non-ferrous Metal Co. Itd and Chinese Institute of Engineering Physics, as well as Nuclear Power Institute of China has been established. Up to now, several series of interlayer for hot isostatic press ( HIP ) connection of beryllium and CuCrZr alloy have been tested. They are titanium film or coating, Cu coating and Al or AISiMg alloy etc. The bonding strength (tensile or shear strength ) of HIPed Be/Cu joints is up to 100 MPa.
文摘To prevent direct contact of the melt and basemat concrete of the cavity in a postulated core melt accident, a core catcher concept is suggested. Upon ablation of the sacrificial layer on top of the core catcher while molten core material is discharged, a mixture of water and gas is injected from below. It is expected that a simultaneous injection of water and gas could prevent a possible steam explosion/spike and also suppress the rapid release of steam which might result in fast over-pressurization of the containment. A test facility for the core catcher using a thermite reaction technique for the generation of the melt was designed and constructed at Korea Atomic Energy Research Institute (KAERI). The first series of tests were performed by using a mixture of Al, Fe2O3, and CaO as a stimulant. As a first try, only water was injected from the bottom of the melt through five water injection nozzles when the melt front reached the water injection nozzles. A description of the test facility for the core catcher, the thermite composition, and the methods of experiment is included. The test results are discussed.
文摘The thermal resistances distribution in different wet-bulb temperatures, air velocities and spraying water densities were achieved by the experimental test. The fluctuation of the water film convection and the water-air interfacial thermal resistance were reviewed especially. In the distribution of thermal resistance, the rank of the thermal resistance proportion (from max to min) is air flow heat transfer resistance, heat transfer resistance between refrigerant and wall, water film convection resistance and wall heat transfer resistance. When the heat flux is constant, the total resistance lowers nearly along with the increasing of air flow and water spray density. But there are a best air flow value of 2.98 m/s and a best spray water density of 0.064 kg/(m ·s) respectively, if continue to increase them, condensation performance is not significantly improved any more. The test results are available to improve the evaporative condenser performance and the designing lever.
文摘The performance of a BTES (borehole thermal energy storage) system is primarily governed by ground heat flux, soil thermal properties and groundwater conditions. However, the design of the heat exchanger used within the BTES system can also make a significant difference in the efficiency of the system. A thermal response test was carded out for a Kelix GHE (ground heat exchanger) system, the latest innovation in geothermal ground loop construction, on an Ecofarm in the town of Caledon East, Ontario, Canada. In addition, a verifying test was performed for a CEES (conventional earth energy system) located 6 m away from the Kelix GHE. The boreholes for these two different heat exchanger designs were drilled with the same diameter, to the same depth and were located in the same/identical geo-hydrological conditions. The response test provided the effective average of undisturbed ground temperature, geothermal properties including thermal conductivity, heat capacity and thermal resistance between the fluid and the borehole wall. The mathematical analysis method used for the response test is presented here. Results of the response test were verified, analyzed and are further discussed.
文摘This study is aimed at the thermal analysis of sealant mortar (usually a mixtures of bentonite and cemem with addition of sand) used in geothermal cooling and heating. In particular, thermal conductivity and diffusivity measurements were performed on differem sealant mixtures by using Hot Disk thermal constants analyzer in order to identify the interesting thermal properties of grouting materials. The grouting materials that we considered are of porous nature and, if used in the presence of groundwater, have different levels of imbibitions. It is important to know the thermal behavior of these materials at different water content. A first set of measurements was performed on a not-tinted material at room temperature; then the samples were led to saturation conditions by contact capillary imbibitions with a cotton wool layer moistened in water. The determination of thermal conductivity in these test conditions appears to be critical compared to the measuremems on non-timed sample. The thermal conductivity tests have revealed how the thermal behavior of the samples analyzed is essentially determined by the density and water content of the material: in fact, the thermal conductivity increases of two to three times the value of the not-tinted material.
文摘Though TES (thermal energy storage) is developed hugely in most of the solar power generation plants, it is less growth in implementing a modular type of TES in a solar plant, e.g., solar dish/stifling engine application. The main issue in designing the TES system is its thermal capacity of storage materials, e.g., insulator. This study is focusing on the potential waste material as an insulator for thermal energy storage applications. The insulator usage is to reduce the heat transfer between two mediums and the capability is measured by its resistance to heat flow. It is needed to obtain optimal materials to energy conversion at the same time reduce the waste generation. Therefore, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room without any forced cooling system, e.g., fan. The testing is repeated by changing the insulator using the potential waste material from natural and industrial waste and also by changing the HTF (heat transfer fluid). The analysis is performed on the relationship between heat loss and the reserved period by the insulator. The results indicate the percentage of period of the insulated tank withstands the heat compared to non-insulated tank, e.g., cotton reserved the period of 14% more than non-insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator in different heat transfer fluids.
文摘N2O represents a popular oxidizer for hybrid rocket motors for a variety of reasons, including safety, ease of access and self-pressurization. It is often used as a saturated two-phase fluid in these applications to take advantage of self-pressurization. Recent interest in using this oxidizer in regeneratively cooled engines requires a detailed heat transfer process analysis to the coolant, in order to quantify performance. Since the injection of N2O typically takes place in the two-phase region, our study focuses on heat transfer rates in this region, and extends the region to include superheated vapor. This analysis is critical for these cooling applications, because the exothermic decomposition nature of N2O also means that unchecked heating in the superheated region may result in a runaway reaction in the cooling passages. Furthermore, provided that sufficient heat transfer rates are available, N2O is expected to accelerate in the cooling passages due to Rayleigh flow effects much like those of a calorically perfect gas. The proximity of superheated N2O to its saturated vapor curve, at the conditions studied here, makes the suitability of a perfect gas model questionable, but that benchmarks is still useful. This paper presents the development of an experimental apparatus (a "Rayleigh tube"), specifically designed to study this problem, and test the analytical methods developed to model it. Since we focus on the development of the apparatus, the data presented were uses primarily calorically perfect gas surrogates, but the goal is to apply the apparatus and method to N2O. The design and construction of the Rayleigh tube is presented, along with preliminary results with perfect gases. Finally, we present preliminary results on heated N2O flow. Using a simple model for predicted dry-out point, we investigate where superheating may be expected to occur. We present estimates of critical heating and compare them to the heat required to achieve self-decomposition.
基金Financial support from the National Basic Research Program of China "973" (Grant No. 2013CB035702)
文摘The film cooling performance of chevron holes with different inclination angles and exit lateral diffusion angles has been studied experimentally and numerically. The inclination angles include 35° and 55°. The exit lateral diffusion angles include 20° and 25°. The film cooling effectiveness, heat transfer coefficient and discharge coefficient were measured on a flat plate model by transient liquid crystal measurement technique under four blowing ratios. The results show that the large inclination angle reduces the film cooling effectiveness. The influence of diffusion angle has two aspects: the large diffusion angle leads to mainstream ingestion and decreases film cooling effectiveness at M=1.0 and 1.5; however, the large diffusion angle increases the film cooling effectiveness at high blowing ratio of 2.0, because the larger hole exit area decreases the normal momentum component of the film jet. The large inclination angle decreases the heat transfer coefficient in the right downstream region at M=0.5 and 1.0. The large diffusion angle enhances the heat transfer in the right downstream of the holes in M=0.5~1.5 conditions. The chevron hole with large inclination angle generally has the highest discharge coefficient.
文摘Microchannel heat sinks constitute an innovative cooling technology for the removal of a large amount of heat from a small area and are suitable for electronics cooling.In the present work,Tool Steel D2 grade milling slitting saw type plain milling cutter is fabricated The microchannels are machined in aluminum work pieces to form the microchannel heat sink using the fabricated milling cutter in an horizontal milling machine.A new experimental set-up is fabricated to conduct the tests on the microchannel heat sink.The heat carried by the water increases with mass flow rate and heat input.The heat transfer coefficient and Nusselt number increases with mass flow rate and increased heat input.The pressure drop increases with Reynolds number and decreases with input heat.The friction factor decreases with Reynolds number and decreases with input heat.The thermal resistance decreases with pumping power and decreases with input heat.