Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the dat...Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the data of power demand from the year 1980 to 2005 in China, a nonlinear network model was obtained on the relationship between power demand and the factors which had impacts on it, and thus the above proposed method was verified. Meanwhile, the results were compared to those of neural network optimized by genetic algorithm. The results show that this method is superior to neural network optimized by genetic algorithm and is one of the effective ways of time series forecast.展开更多
As the critical equipment,large axial-flow fan(LAF)is used widely in highway tunnels for ventilating.Note that any malfunction of LAF can cause severe consequences for traffic.Specifically,fault deterioration is suppr...As the critical equipment,large axial-flow fan(LAF)is used widely in highway tunnels for ventilating.Note that any malfunction of LAF can cause severe consequences for traffic.Specifically,fault deterioration is suppressed tremendously when an abnormal state is detected in the stage of early fault.Thus,the monitoring of the early fault characteristics is very difficult because of the low signal amplitude and system disturbance(or noise).In order to overcome this problem,a novel early fault judgment method to predict the operation trend is proposed in this paper.The vibration-electric information fusion,the support vector machine(SVM)with particle swarm optimization(PSO),and the cross-validation(CV)for predicting LAF operation states are proposed and discussed.Finally,the results of the experimental study verify that the performance of the proposed method is superior to that of the contrast models.展开更多
In view of the difficulty in supporting the surrounding rocks of roadway 3-411 ofFucun Coal Mine of Zaozhuang Mining Group, a deformation forecasting model was putforward based on particle swarm optimization.The kerne...In view of the difficulty in supporting the surrounding rocks of roadway 3-411 ofFucun Coal Mine of Zaozhuang Mining Group, a deformation forecasting model was putforward based on particle swarm optimization.The kernel function and model parameterswere optimized using particle swarm optimization.It is shown that the forecast result isvery close to the real monitoring data.Furthermore, the PSO-SVM (Particle Swarm Optimization-Support Vector Machine) model is compared with the GM(1,1) model and L-M BPnetwork model.The results show that PSO-SVM method is better in the aspect of predictionaccuracy and the PSO-SVM roadway deformation pre-diction model is feasible for thelarge deformation prediction of coal mine roadway.展开更多
The real-valued self set in immunity-based network intrusion detection system (INIDS) has some defects: multi-area and overlapping, which are ignored before. The detectors generated by this kind of self set may hav...The real-valued self set in immunity-based network intrusion detection system (INIDS) has some defects: multi-area and overlapping, which are ignored before. The detectors generated by this kind of self set may have the problem of boundary holes between self and nonself regions, and the generation efficiency is low, so that, the self set needs to be optimized before generation stage. This paper proposes a self set optimization algorithm which uses the modified clustering algorithm and Gaussian distribution theory. The clustering deals with multi-area and the Gaussian distribution deals with the overlapping. The algorithm was tested by Iris data and real network data, and the results show that the optimized self set can solve the problem of boundary holes, increase the efficiency of detector generation effectively, and improve the system's detection rate.展开更多
Copy-Move Forgery(CMF) is one of the simple and effective operations to create forged digital images.Recently,techniques based on Scale Invariant Features Transform(SIFT) are widely used to detect CMF.Various approach...Copy-Move Forgery(CMF) is one of the simple and effective operations to create forged digital images.Recently,techniques based on Scale Invariant Features Transform(SIFT) are widely used to detect CMF.Various approaches under the SIFT-based framework are the most acceptable ways to CMF detection due to their robust performance.However,for some CMF images,these approaches cannot produce satisfactory detection results.For instance,the number of the matched keypoints may be too less to prove an image to be a CMF image or to generate an accurate result.Sometimes these approaches may even produce error results.According to our observations,one of the reasons is that detection results produced by the SIFT-based framework depend highly on parameters whose values are often determined with experiences.These values are only applicable to a few images,which limits their application.To solve the problem,a novel approach named as CMF Detection with Particle Swarm Optimization(CMFDPSO) is proposed in this paper.CMFD-PSO integrates the Particle Swarm Optimization(PSO) algorithm into the SIFT-based framework.It utilizes the PSO algorithm to generate customized parameter values for images,which are used for CMF detection under the SIFT-based framework.Experimental results show that CMFD-PSO has good performance.展开更多
To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is propos...To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools.展开更多
3D reconstruction of terrain model based on digital line graphics (DLG) is discussed. An auto-coupling triangles algo-rithm based on triangle topological relationship is put forward, and the topological data model of ...3D reconstruction of terrain model based on digital line graphics (DLG) is discussed. An auto-coupling triangles algo-rithm based on triangle topological relationship is put forward, and the topological data model of complicated terrain is developed. Based on this data model, automatic 3D topological reconstruction of terrain is realized.展开更多
In order to overcome the disturbance of noise,this paper presented a method to measure two-phase flow velocity using particle swarm optimization algorithm,nonlinear blind source separation and cross correlation method...In order to overcome the disturbance of noise,this paper presented a method to measure two-phase flow velocity using particle swarm optimization algorithm,nonlinear blind source separation and cross correlation method.Because of the nonlinear relationship between the output signals of capacitance sensors and fluid in pipeline,nonlinear blind source separation is applied.In nonlinear blind source separation,the odd polynomials of higher order are used to fit the nonlinear transformation function,and the mutual information of separation signals is used as the evaluation function.Then the parameters of polynomial and linear separation matrix can be estimated by mutual information of separation signals and particle swarm optimization algorithm,thus the source signals can be separated from the mixed signals.The two-phase flow signals with noise which are obtained from upstream and downstream sensors are respectively processed by nonlinear blind source separation method so that the noise can be effectively removed.Therefore,based on these noise-suppressed signals,the distinct curves of cross correlation function and the transit times are obtained,and then the velocities of two-phase flow can be accurately calculated.Finally,the simulation experimental results are given.The results have proved that this method can meet the measurement requirements of two-phase flow velocity.展开更多
Using difference quotient instead of derivative, the paper presents the solution method and procedure of the nonlinear least square estimation containing different classes of measurements. In the meantime, the paper s...Using difference quotient instead of derivative, the paper presents the solution method and procedure of the nonlinear least square estimation containing different classes of measurements. In the meantime, the paper shows several practical cases, which indicate the method is very valid and reliable.展开更多
The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive trea...The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive treatment of above problems, a novel two-stage prediction and update particle filte- ring algorithm based on particle weight optimization in multi-sensor observation is proposed. Firstly, combined with the construction of muhi-senor observation likelihood function and the weight fusion principle, a new particle weight optimization strategy in multi-sensor observation is presented, and the reliability and stability of particle weight are improved by decreasing weight variance. In addi- tion, according to the prediction and update mechanism of particle filter and unscented Kalman fil- ter, a new realization of particle filter with two-stage prediction and update is given. The filter gain containing the latest observation information is used to directly optimize state estimation in the frame- work, which avoids a large calculation amount and the lack of universality in proposal distribution optimization way. The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.展开更多
This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine th...This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine the minimum number of PMUs, as well as the optimal location of these units to ensure the complete topological observability of the system. In case of more than one solution, a strategy of analysis of the design matrix rank is applied to determine the solution with the lower number of critical measurements. In the proposed method of placement, modifications are made in the crossover and mutation genetic operators, as well as in the formation of the subpopulation, and are considered restrictive hypotheses in the search space to improve the performance in solving the optimization problem. Simulations are performed using the IEEE 14-bus, IEEE 30-bus and New England 39-bus test systems. The proposed method is applied on the IEEE 118-bus test system considering the presence of observable zones formed by conventional measurements.展开更多
This paper presents a method of determining the friction coefficient in metal forming using multilayer artificial neural networks based on experimental data obtained from strip drawing test. The number of input variab...This paper presents a method of determining the friction coefficient in metal forming using multilayer artificial neural networks based on experimental data obtained from strip drawing test. The number of input variables of the artificial neural network has been optimized using genetic algorithm. This process is based on surface parameters of the sheet and dies, sheet material parameters and clamping force as input parameters to train the neural network. In addition to demonstrating the fact that regression statistics model using genetic selection and intelligent problem solver are better than models without preprocessing of input data, the sensitivity analysis of the input variables has been conducted. This avoids the time-consuming testing of neurons in finding the best network architecture. The obtained results from this study have also pointed out that genetic algorithm can successfully be applied to optimize the training set and the outputs agree with experimental results. This allows reduction or elimination of expensive experimental tests to determine friction coefficient value.展开更多
In order to solve the problem of metal impurities mixed in the production line of wood pulp nonwoven raw materials,intelligent metal detection and disposal automation equipment is designed.Based on the principle of el...In order to solve the problem of metal impurities mixed in the production line of wood pulp nonwoven raw materials,intelligent metal detection and disposal automation equipment is designed.Based on the principle of electromagnetic induction,the precise positioning of metal coordinates is realized by initial inspection and multi-directional re-inspection.Based on a geometry optimization driving algorithm,the cutting area is determined by locating the center of the circle that covers the maximum area.This approach aims to minimize the cutting area and maximize the use of materials.Additionally,the method strives to preserve as many fabrics at the edges as possible by employing the farthest edge covering circle algorithm.Based on a speed compensation algorithm,the flexible switching of upper and lower rolls is realized to ensure the maximum production efficiency.Compared with the metal detection device in the existing production line,the designed automation equipment has the advantages of higher detection sensitivity,more accurate metal coordinate positioning,smaller cutting material areas and higher production efficiency,which can make the production process more continuous,automated and intelligent.展开更多
A prompt gamma neutron activation analysis(PGNAA)set-up was developed for the elements detection in aqueous solution,which includes a 241Am-Be neutron source and a 4-inch BGO detector.The geometry of set-up is determi...A prompt gamma neutron activation analysis(PGNAA)set-up was developed for the elements detection in aqueous solution,which includes a 241Am-Be neutron source and a 4-inch BGO detector.The geometry of set-up is determined by a series of simulations with the MOCA code to improve the efficiency of the elements detection.The thermal neutron flux and the gamma-ray self-absorption are considered during the optimization calculations.Experiments were performed to validate the set-up using samples including chlorine and mercury,respectively.The result shows that the characteristic peak count has linear relationship with the chlorine and mercury concentration changing.The minimum detectable concentrations of chlorine and mercury were found as 54 mg/L and 51.4 mg/L,respectively.展开更多
基金Project(70373017) supported by the National Natural Science Foundation of China
文摘Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the data of power demand from the year 1980 to 2005 in China, a nonlinear network model was obtained on the relationship between power demand and the factors which had impacts on it, and thus the above proposed method was verified. Meanwhile, the results were compared to those of neural network optimized by genetic algorithm. The results show that this method is superior to neural network optimized by genetic algorithm and is one of the effective ways of time series forecast.
基金Project(2018YFB2002100)supported by the National Key R&D Program of China。
文摘As the critical equipment,large axial-flow fan(LAF)is used widely in highway tunnels for ventilating.Note that any malfunction of LAF can cause severe consequences for traffic.Specifically,fault deterioration is suppressed tremendously when an abnormal state is detected in the stage of early fault.Thus,the monitoring of the early fault characteristics is very difficult because of the low signal amplitude and system disturbance(or noise).In order to overcome this problem,a novel early fault judgment method to predict the operation trend is proposed in this paper.The vibration-electric information fusion,the support vector machine(SVM)with particle swarm optimization(PSO),and the cross-validation(CV)for predicting LAF operation states are proposed and discussed.Finally,the results of the experimental study verify that the performance of the proposed method is superior to that of the contrast models.
基金Supported by the National Natural Science Foundation of Zhejiang Province(2009C33049)the National Natural Science Foundation of China(50674040)
文摘In view of the difficulty in supporting the surrounding rocks of roadway 3-411 ofFucun Coal Mine of Zaozhuang Mining Group, a deformation forecasting model was putforward based on particle swarm optimization.The kernel function and model parameterswere optimized using particle swarm optimization.It is shown that the forecast result isvery close to the real monitoring data.Furthermore, the PSO-SVM (Particle Swarm Optimization-Support Vector Machine) model is compared with the GM(1,1) model and L-M BPnetwork model.The results show that PSO-SVM method is better in the aspect of predictionaccuracy and the PSO-SVM roadway deformation pre-diction model is feasible for thelarge deformation prediction of coal mine roadway.
基金Supported by the National Natural Science Foundation of China (No. 60671049, 61172168)and Graduate Innovation Project of Heilongjiang (No. YJSCX2011-034HLI)
文摘The real-valued self set in immunity-based network intrusion detection system (INIDS) has some defects: multi-area and overlapping, which are ignored before. The detectors generated by this kind of self set may have the problem of boundary holes between self and nonself regions, and the generation efficiency is low, so that, the self set needs to be optimized before generation stage. This paper proposes a self set optimization algorithm which uses the modified clustering algorithm and Gaussian distribution theory. The clustering deals with multi-area and the Gaussian distribution deals with the overlapping. The algorithm was tested by Iris data and real network data, and the results show that the optimized self set can solve the problem of boundary holes, increase the efficiency of detector generation effectively, and improve the system's detection rate.
基金supported in part by the National Natural Science Foundation of China under grant No.(61472429,61070192,91018008,61303074,61170240)Beijing Natural Science Foundation under grant No.4122041+1 种基金National High-Tech Research Development Program of China under grant No.2007AA01Z414National Science and Technology Major Project of China under grant No.2012ZX01039-004
文摘Copy-Move Forgery(CMF) is one of the simple and effective operations to create forged digital images.Recently,techniques based on Scale Invariant Features Transform(SIFT) are widely used to detect CMF.Various approaches under the SIFT-based framework are the most acceptable ways to CMF detection due to their robust performance.However,for some CMF images,these approaches cannot produce satisfactory detection results.For instance,the number of the matched keypoints may be too less to prove an image to be a CMF image or to generate an accurate result.Sometimes these approaches may even produce error results.According to our observations,one of the reasons is that detection results produced by the SIFT-based framework depend highly on parameters whose values are often determined with experiences.These values are only applicable to a few images,which limits their application.To solve the problem,a novel approach named as CMF Detection with Particle Swarm Optimization(CMFDPSO) is proposed in this paper.CMFD-PSO integrates the Particle Swarm Optimization(PSO) algorithm into the SIFT-based framework.It utilizes the PSO algorithm to generate customized parameter values for images,which are used for CMF detection under the SIFT-based framework.Experimental results show that CMFD-PSO has good performance.
基金The National Natural Science Foundation of China(No.51465035)the Natural Science Foundation of Gansu,China(No.20JR5R-A466)。
文摘To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools.
文摘3D reconstruction of terrain model based on digital line graphics (DLG) is discussed. An auto-coupling triangles algo-rithm based on triangle topological relationship is put forward, and the topological data model of complicated terrain is developed. Based on this data model, automatic 3D topological reconstruction of terrain is realized.
基金Supported by the National Natural Science Foundation of China (50736002,61072005)the Youth Backbone Teacher Project of University,Ministry of Education,China+1 种基金the Scientific Research Foundation of the Department of Science and Technology of Liaoning Province (20102082)the Changjiang Scholars and Innovative Team Development Plan (IRT0952)
文摘In order to overcome the disturbance of noise,this paper presented a method to measure two-phase flow velocity using particle swarm optimization algorithm,nonlinear blind source separation and cross correlation method.Because of the nonlinear relationship between the output signals of capacitance sensors and fluid in pipeline,nonlinear blind source separation is applied.In nonlinear blind source separation,the odd polynomials of higher order are used to fit the nonlinear transformation function,and the mutual information of separation signals is used as the evaluation function.Then the parameters of polynomial and linear separation matrix can be estimated by mutual information of separation signals and particle swarm optimization algorithm,thus the source signals can be separated from the mixed signals.The two-phase flow signals with noise which are obtained from upstream and downstream sensors are respectively processed by nonlinear blind source separation method so that the noise can be effectively removed.Therefore,based on these noise-suppressed signals,the distinct curves of cross correlation function and the transit times are obtained,and then the velocities of two-phase flow can be accurately calculated.Finally,the simulation experimental results are given.The results have proved that this method can meet the measurement requirements of two-phase flow velocity.
文摘Using difference quotient instead of derivative, the paper presents the solution method and procedure of the nonlinear least square estimation containing different classes of measurements. In the meantime, the paper shows several practical cases, which indicate the method is very valid and reliable.
基金Supported by the National Natural Science Foundations of China(No.61300214,61170243)the Science and Technology Innovation Team Support Plan of Education Department of Henan Province(No.13IRTSTHN021)+2 种基金the Science and Technology Research Key Project of Education Department of Henan Province(No.13A413066)the Basic and Frontier Technology Research Plan of Henan Province(No.132300410148)the Funding Scheme of Young Key Teacher of Henan Province Universities,and the Key Project of Teaching Reform Research of Henan University(No.HDXJJG2013-07)
文摘The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive treatment of above problems, a novel two-stage prediction and update particle filte- ring algorithm based on particle weight optimization in multi-sensor observation is proposed. Firstly, combined with the construction of muhi-senor observation likelihood function and the weight fusion principle, a new particle weight optimization strategy in multi-sensor observation is presented, and the reliability and stability of particle weight are improved by decreasing weight variance. In addi- tion, according to the prediction and update mechanism of particle filter and unscented Kalman fil- ter, a new realization of particle filter with two-stage prediction and update is given. The filter gain containing the latest observation information is used to directly optimize state estimation in the frame- work, which avoids a large calculation amount and the lack of universality in proposal distribution optimization way. The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.
文摘This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine the minimum number of PMUs, as well as the optimal location of these units to ensure the complete topological observability of the system. In case of more than one solution, a strategy of analysis of the design matrix rank is applied to determine the solution with the lower number of critical measurements. In the proposed method of placement, modifications are made in the crossover and mutation genetic operators, as well as in the formation of the subpopulation, and are considered restrictive hypotheses in the search space to improve the performance in solving the optimization problem. Simulations are performed using the IEEE 14-bus, IEEE 30-bus and New England 39-bus test systems. The proposed method is applied on the IEEE 118-bus test system considering the presence of observable zones formed by conventional measurements.
文摘This paper presents a method of determining the friction coefficient in metal forming using multilayer artificial neural networks based on experimental data obtained from strip drawing test. The number of input variables of the artificial neural network has been optimized using genetic algorithm. This process is based on surface parameters of the sheet and dies, sheet material parameters and clamping force as input parameters to train the neural network. In addition to demonstrating the fact that regression statistics model using genetic selection and intelligent problem solver are better than models without preprocessing of input data, the sensitivity analysis of the input variables has been conducted. This avoids the time-consuming testing of neurons in finding the best network architecture. The obtained results from this study have also pointed out that genetic algorithm can successfully be applied to optimize the training set and the outputs agree with experimental results. This allows reduction or elimination of expensive experimental tests to determine friction coefficient value.
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)。
文摘In order to solve the problem of metal impurities mixed in the production line of wood pulp nonwoven raw materials,intelligent metal detection and disposal automation equipment is designed.Based on the principle of electromagnetic induction,the precise positioning of metal coordinates is realized by initial inspection and multi-directional re-inspection.Based on a geometry optimization driving algorithm,the cutting area is determined by locating the center of the circle that covers the maximum area.This approach aims to minimize the cutting area and maximize the use of materials.Additionally,the method strives to preserve as many fabrics at the edges as possible by employing the farthest edge covering circle algorithm.Based on a speed compensation algorithm,the flexible switching of upper and lower rolls is realized to ensure the maximum production efficiency.Compared with the metal detection device in the existing production line,the designed automation equipment has the advantages of higher detection sensitivity,more accurate metal coordinate positioning,smaller cutting material areas and higher production efficiency,which can make the production process more continuous,automated and intelligent.
基金supported by the National Natural Science Foundation of China(Grant No.11375087)National Key Scientific Instrument and Equipment Development Projects(Grant No.2013YQ40861)
文摘A prompt gamma neutron activation analysis(PGNAA)set-up was developed for the elements detection in aqueous solution,which includes a 241Am-Be neutron source and a 4-inch BGO detector.The geometry of set-up is determined by a series of simulations with the MOCA code to improve the efficiency of the elements detection.The thermal neutron flux and the gamma-ray self-absorption are considered during the optimization calculations.Experiments were performed to validate the set-up using samples including chlorine and mercury,respectively.The result shows that the characteristic peak count has linear relationship with the chlorine and mercury concentration changing.The minimum detectable concentrations of chlorine and mercury were found as 54 mg/L and 51.4 mg/L,respectively.