A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one...A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one or several existing shear surfaces. The framework is developed based on a thorough analysis of the scientific literature and with reference to significant reported case studies for which a consistent dataset of continuous displacement measurements is available. Three distinct trends of movement are defined to characterize the kinematic behavior of the active stages of slow-moving landslides in a velocity-time plot: a linear trend-type I, which is appropriate for stationary phenomena; a convex shaped trend-type II, which is associated with rapid increases in pore water pressure due to rainfall, followed by a slow decrease in the groundwater level with time; and a concave shaped trend-type III, which denotes a non-stationary process related to the presence of new boundary conditions such as those associated with the development of a newly formed local slip surface that connects with the main existing slip surface. Within the proposed framework, a model is developed to forecast future displacements for active stages of trend-type II based on displacement measurements at the beginning of the stage. The proposed model is validated by application to two case studies.展开更多
Vehicular Ad Hoc Network (VANET) has emerged as a new wireless network for vehicular communications. To provide a flexible and high reliable communication service in VANET, vehicles are clustered to construct many s...Vehicular Ad Hoc Network (VANET) has emerged as a new wireless network for vehicular communications. To provide a flexible and high reliable communication service in VANET, vehicles are clustered to construct many small networks (clusters) so that channel interferences and flooding messages can be limited. This research presents a novel Multi-Resolution Relative Speed Detection (MRSD) model to improve the clustering algorithm in VANET without using Global Positioning System (GPS). MRSD uses the Moving Average Convergence Divergence (MACD), the Momentum of Received Signal Strength (MRSS), and Artificial Neural Networks (ANNs) to estimate the motion state and the relative speed of a vehicle based purely on Received Signal Strength. The proposed MRSD model is accurate with the assistance of the intelligent classification, and incurs less overhead in the cluster head election than that of other algorithms.展开更多
基金partially supported by the University of Salerno (Italy) through the Civil and Environmental Engineering Ph.D. programme and FARB research funding
文摘A framework is proposed to characterize and forecast the displacement trends of slow-moving landslides, defined as the reactivation stage of phenomena in rocks or fine-grained soils, with movements localized along one or several existing shear surfaces. The framework is developed based on a thorough analysis of the scientific literature and with reference to significant reported case studies for which a consistent dataset of continuous displacement measurements is available. Three distinct trends of movement are defined to characterize the kinematic behavior of the active stages of slow-moving landslides in a velocity-time plot: a linear trend-type I, which is appropriate for stationary phenomena; a convex shaped trend-type II, which is associated with rapid increases in pore water pressure due to rainfall, followed by a slow decrease in the groundwater level with time; and a concave shaped trend-type III, which denotes a non-stationary process related to the presence of new boundary conditions such as those associated with the development of a newly formed local slip surface that connects with the main existing slip surface. Within the proposed framework, a model is developed to forecast future displacements for active stages of trend-type II based on displacement measurements at the beginning of the stage. The proposed model is validated by application to two case studies.
文摘Vehicular Ad Hoc Network (VANET) has emerged as a new wireless network for vehicular communications. To provide a flexible and high reliable communication service in VANET, vehicles are clustered to construct many small networks (clusters) so that channel interferences and flooding messages can be limited. This research presents a novel Multi-Resolution Relative Speed Detection (MRSD) model to improve the clustering algorithm in VANET without using Global Positioning System (GPS). MRSD uses the Moving Average Convergence Divergence (MACD), the Momentum of Received Signal Strength (MRSS), and Artificial Neural Networks (ANNs) to estimate the motion state and the relative speed of a vehicle based purely on Received Signal Strength. The proposed MRSD model is accurate with the assistance of the intelligent classification, and incurs less overhead in the cluster head election than that of other algorithms.