This paper introduces the development and industrial application of an on-line corrosion monitoring device for condenser tubes. Corrosion sensors are made up of representative condenser tubes chosen by eddy current te...This paper introduces the development and industrial application of an on-line corrosion monitoring device for condenser tubes. Corrosion sensors are made up of representative condenser tubes chosen by eddy current test, which enable the monitoring result to be consistent with the corrosion of actual condenser tubes. Localized corrosion rate of condenser tubes can be measured indirectly by a galvanic couple made up of tube segments with and without pits. Using this technology, corrosion problems can be found in time and accurately, and anticorrosive measures be made more economic and effective. Applications in two power plants showed the corrosion measurements are fast and accurate.展开更多
Mg-6%Al-5%Pb and Mg-6%Al-5%Pb-0.55%Zn-0.22%Mn(mass fraction) alloys were prepared by induction melting with the protection of argon.The corrosion behaviors of these alloys were studied by electrochemical measurements ...Mg-6%Al-5%Pb and Mg-6%Al-5%Pb-0.55%Zn-0.22%Mn(mass fraction) alloys were prepared by induction melting with the protection of argon.The corrosion behaviors of these alloys were studied by electrochemical measurements and immersion tests.The results show that at the corrosion onset of Mg-Al-Pb anode there is an incubation period that can be shortened with 0.55%Zn and 0.22%Mn additions in the magnesium matrix.The corrosion rate of Mg-Al-Pb anode is mainly determined by the incubation period.Short incubation period always leads to high corrosion rate while long incubation period leads to low corrosion rate.The corrosion rates based on the corrosion current density by the electrochemical measurements do not agree with the measurements evaluated from the evolved hydrogen volume.展开更多
The galvanic corrosion behavior of metal-matrix composite plain carbon steel/boron carbide (B4C) in 3.5% NaCl solution was studied. The composite was locally produced as a weld band on carbon steel by means of the g...The galvanic corrosion behavior of metal-matrix composite plain carbon steel/boron carbide (B4C) in 3.5% NaCl solution was studied. The composite was locally produced as a weld band on carbon steel by means of the gas tungsten arc welding process and using nickel as the wetting agent. Samples from the weld band, heat-affected zone and parent metal region were extracted precisely and DC/AC electrochemical tests in combination with techniques such as scanning electron microcopy and energy dispersive spectrometry were conducted. The results of the electrochemical tests show that the corrosion resistance of the parent metal sample is higher than that of the welded composite and the HAZ samples. However, as the corrosion potential (Eco^r) of the parent metal is more positive than other two samples, this becomes the cathode in galvanic couples with two other samples. On the other hand, the weld composite sample is also cathodic due to its more positive Ecorr compared to HAZ sample. This means that the HAZ can be particularly at risk of preferential dissolution. The approach can be used in specific areas on plain carbon steel to locally increase hardness and resistance to abrasion and reduce manufacturing costs.展开更多
Electrochemical impedance(EIS)and thin electrical resistance(ER)sensors were invented for atmospheric corrosion measurement of copper(Cu)during cyclic wetting−drying/high−low temperature tests and field exposure tests...Electrochemical impedance(EIS)and thin electrical resistance(ER)sensors were invented for atmospheric corrosion measurement of copper(Cu)during cyclic wetting−drying/high−low temperature tests and field exposure tests.Three-month field exposure results showed that average corrosion rate of Cu measured by ER sensor was well in accordance with that by weight loss method.During cyclic wetting−drying test,EIS was proven to reflect sensitively time of wetting and drying on the surface of sensor.Although corrosion rate obtained from EIS had a similar tendency to that obtained from ER sensors,the former was more dependent on environmental humidity than the latter.When relative humidity was low than 60%,corrosion rate of Cu measured by EIS was much lower than that by weight loss method,mainly attributing to the fact that impedance sensor failed to detect corrosion current of interlaced Cu electrodes due to the breakdown of conductive passage composed of absorbed thin liquid film under low humidity condition.Promisingly,ER sensor was proven to be more suitable for atmospheric corrosion monitoring than electrochemical techniques because it could sensitively monitor thickness loss of Cu foil according to the Ohmic law,no matter how dry or wet the sensor surface is.展开更多
The novel method to analyze metallic structure corrosion status was proposed in the presence of stray current in DC mass transit systems. Firstly, the characteristic parameter and the influence parameters for the corr...The novel method to analyze metallic structure corrosion status was proposed in the presence of stray current in DC mass transit systems. Firstly, the characteristic parameter and the influence parameters for the corrosion status were determined. Secondly, an experimental system was established for simulating the corrosion process within the stray current interference. Then, a predictive model for the corrosion status was built, using a support vector machine(SVM) method and experimental data. The data were divided into two sets, including training set and testing set. The training set was used to generate the SVM model and the testing set was used to evaluate the predictive performance of the SVM model. The results show that the relationship between the characteristic parameter and the influence parameters is nonlinear and the SVM model is suitable for predicting the corrosion status.展开更多
Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than ...Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than those with glass or aramid fiber.However,carbon fiber binding metal may lead to galvanic corrosion which limits its application.In this paper,electrochemical methods,optical microscope and scanning electron microscope were used to analyze the corrosion evolution of carbon fiber reinforced aluminum laminate(CARALL)in corrosive environment and explore anti-corrosion ways to protect CARALL.The results show that the connection between carbon fiber and aluminum alloy changes electric potential,causing galvanic corrosion.The galvanic corrosion will obviously accelerate CARALL corroded in solution,leading to a 72.1%decrease in interlaminar shear strength,and the crevice corrosion has a greater impact on CARALL resulting in delamination.The reduction of interlaminar shear strength has a similar linear relationship with the corrosion time.In addition,the adhesive layers between carbon fiber and aluminum alloy cannot protect CARALL,while side edge protection can effectively slow down corrosion rate.Therefore,the exposed edges should be coated with anti-corrosion painting.CARALL has the potential to be used for aerospace components.展开更多
The effects of trace element Fe on the corrosion behavior of AZ80 magnesium alloy were investigated by salt spray test and electrochemical measurements.The results show that the corrosion rate decreases with decreasin...The effects of trace element Fe on the corrosion behavior of AZ80 magnesium alloy were investigated by salt spray test and electrochemical measurements.The results show that the corrosion rate decreases with decreasing the trace element Fe content in an approximately linear relation even though the amount of trace element Fe reduces to 0.000 2%(mass fraction).The electrochemical measurements show that the corrosion potential(φcorr)of the alloy with lower trace element Fe content shifts to less negative value.It is suggested that the control trace element by purification is an effective way to enhance the corrosion resistance of AZ80 magnesium alloy.展开更多
The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated...The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated. Tafel polarization and electrochemical impedance spectroscopy (EIS) were used to investigate the influence of these organic compounds as corrosion inhibitors of mild steel in 1.0 mol/L HC1 solution at 30 ℃. The inhibition mechanism was discussed in terms of Langrnuir isotherm model. Results obtained from Tafel polarization and impedance measurements are in a good agreement. The inhibition efficiency increases with the increase of the inhibitor concentration. The adsorption of the inhibitors on the mild steel surface follows Langmuir adsorption isotherm and the free energy of adsorption AGads indicates that the adsorption of APTT, EDTA, and TU molecules is a spontaneous process and a typical chemisorption.展开更多
The corrosion behavior of tinplate cans containing coffee was investigated using novel electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) sensors.The contents of iron and tin dissolved in cans w...The corrosion behavior of tinplate cans containing coffee was investigated using novel electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) sensors.The contents of iron and tin dissolved in cans were detected by inductively coupled plasma mass spectrometer(ICP-MS),and the morphology of corroded surface was observed by optical microscopy and scanning probe microscopy(SPM).The results reveal that the coating resistance,charge transfer resistance and noise resistance decrease with the prolongation of storage time.The iron and tin contents in cans increase with the storage time,while the bump height of coating surface increases from 30 nm to 80 nm during the corrosion of twelve months.The existence of deformation would enhance the corrosion process of tinplate cans.Finally,the corrosion mechanism of tinplate cans in coffee was proposed.展开更多
University of New South Wales(UNSW Australia) had been involved in the study of premature failure of rock bolts in Australia coal mines from the initial identification of the problem in 1999. Rock bolt steel changes o...University of New South Wales(UNSW Australia) had been involved in the study of premature failure of rock bolts in Australia coal mines from the initial identification of the problem in 1999. Rock bolt steel changes over the last decade appear to have not reduced the incidence of failures. A broadened UNSW research project funded by the Australian Research Council(ARC) and Industry has targeted finding the environmental causes through extensive field and laboratory experiments. This paper describes the field studies conducted in underground coal mines,in particular attempts to measure the contribution to corrosion from groundwater,mineralogy and microbial activity. Various underground survey techniques were used to determine the extent of broken bolts,with the presence of both stress corrosion cracking(SCC) and localized deep pitting making no single technique suitable on their own.Groundwater found dripping from bolts across various coalfields in Australia were found to be not aggressive and known groundwater corrosivity classification systems did not correlate to where broken bolts were found. In-hole coupon bolts placed in roof strata containing claystone bands confirmed the clay as being a major contributor to corrosion. Microbes capable of contributing to steel corrosion were found to be present in groundwater,and culturing of the microbes taken from in-situ coupon bolts proved that the bacteria was present on the bolt surface. An ‘in-hole bolt corrosion coupon' development by the project may have multiple benefits of (1) helping quantify newly developed corrosivity classification systems,(2) providing an in-situ ground support corrosion monitoring tool,and (3) for testing possible corrosion protection solutions.展开更多
The corrosion mechanism of AZ31 magnesium alloy used as automobile components and the influence of the concentration of Cl- ion in simulated acid rain(SAR)were studied by electrochemical tests and SEM.The results show...The corrosion mechanism of AZ31 magnesium alloy used as automobile components and the influence of the concentration of Cl- ion in simulated acid rain(SAR)were studied by electrochemical tests and SEM.The results show that pitting corrosion happens around the AlMn phases locating at the grain boundary.The corrosion of AZ31 magnesium alloy in SAR is controlled by the rate of anodic dissolution and hydrogen evolution,and the corrosion rate of AZ31 increases with increasing concentration of Cl- ion.However,the Cl- ion in SAR is not the main influencing factor inducing the pitting corrosion.展开更多
The corrosion process of tinplate in deaerated functional beverage was investigated by using electrochemical impedance spectroscopy (EIS) combined with scanning electron microscopy (SEM) and energy dispersive spectros...The corrosion process of tinplate in deaerated functional beverage was investigated by using electrochemical impedance spectroscopy (EIS) combined with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The results reveal that the uncoated tinplate shows a poor corrosion resistance and the corrosion type is detinning. During the initial stage of immersion, EIS spectrum consisted of two capacitance arcs with obvious time-constant dispersion effect, which was attributed to the two-dimensional and three-dimensional inhomogeneous distribution of the electrode surface. With the increase of immersion time, the capacitance arc of high frequency shrunk and degenerated, due to the corrosion of tin coating. The pore resistance of tin coating and the charger transfer resistance of substrate, which are determined from the electrochemical equivalent circuit, can be used as the indicators of tinplate corrosion process. The decrease of the pore resistance of tin coating indicates that the corrosion degree of tin layer becomes more severe, whereas the decrease of the charger transfer resistance of substrate implies that the corrosion degree of steel substrate also becomes more severe as the immersion time prolongs.展开更多
Pipeline of oil and gas have an increased risk because of pipeline punctures and rupture caused by corrosion. Therefore it is very important to have a reliable way for pipeline corrosion prediction. The corrosion dept...Pipeline of oil and gas have an increased risk because of pipeline punctures and rupture caused by corrosion. Therefore it is very important to have a reliable way for pipeline corrosion prediction. The corrosion depth prediction models that based on the support vector machines and chaos were introduced in this paper. A real example was given in this paper. The predicted results showed that the prediction models have a more higher precision. The two corrosion depth prediction models are reasonable in corrosion research, which can supply a scientific basis for pipeline safety management, service life prediction and repair.展开更多
This paper evaluate subsoil corrosivity using the electrical resistivity method which was carried out to determine the subsoil resistivity and estimate the degree of corrosion, the resistivity measurements were conduc...This paper evaluate subsoil corrosivity using the electrical resistivity method which was carried out to determine the subsoil resistivity and estimate the degree of corrosion, the resistivity measurements were conducted by using SAS300c resistivity meter. This involves applying a voltage into the soil through metal electrode and measuring the resistance to the flow of electric current. An AC-power supplies current flow (I) between two outer electrodes and the resultant voltage different (V) between two inner electrodes is measured using the Wenner Arrangement. The soil resistance given by R = V/I. This needs to be standardized over a unit length, the resistivity p which measured in ohm-m the equation is, ρ= 2ДdR. There are many factors control the ground resistivity such as soil composition, moisture content, pore water chemistry and pH. The results of the survey show inverse proportion between corrosivity and electrical resistivity, therefore resistivity method is very useful to incipient the corrosion as well as effective, quick, reliable and economic method. Structures such as natural gas, crude oil pipelines and steel constructions were reported to have been affected by soil corrosion all around the world, it can be concluded that sub soil corrosivity around the study area increases southwestern ward with depth.展开更多
文摘This paper introduces the development and industrial application of an on-line corrosion monitoring device for condenser tubes. Corrosion sensors are made up of representative condenser tubes chosen by eddy current test, which enable the monitoring result to be consistent with the corrosion of actual condenser tubes. Localized corrosion rate of condenser tubes can be measured indirectly by a galvanic couple made up of tube segments with and without pits. Using this technology, corrosion problems can be found in time and accurately, and anticorrosive measures be made more economic and effective. Applications in two power plants showed the corrosion measurements are fast and accurate.
基金Project(JPPT-115-168) supported by National Key Science and Technological Project of China
文摘Mg-6%Al-5%Pb and Mg-6%Al-5%Pb-0.55%Zn-0.22%Mn(mass fraction) alloys were prepared by induction melting with the protection of argon.The corrosion behaviors of these alloys were studied by electrochemical measurements and immersion tests.The results show that at the corrosion onset of Mg-Al-Pb anode there is an incubation period that can be shortened with 0.55%Zn and 0.22%Mn additions in the magnesium matrix.The corrosion rate of Mg-Al-Pb anode is mainly determined by the incubation period.Short incubation period always leads to high corrosion rate while long incubation period leads to low corrosion rate.The corrosion rates based on the corrosion current density by the electrochemical measurements do not agree with the measurements evaluated from the evolved hydrogen volume.
文摘The galvanic corrosion behavior of metal-matrix composite plain carbon steel/boron carbide (B4C) in 3.5% NaCl solution was studied. The composite was locally produced as a weld band on carbon steel by means of the gas tungsten arc welding process and using nickel as the wetting agent. Samples from the weld band, heat-affected zone and parent metal region were extracted precisely and DC/AC electrochemical tests in combination with techniques such as scanning electron microcopy and energy dispersive spectrometry were conducted. The results of the electrochemical tests show that the corrosion resistance of the parent metal sample is higher than that of the welded composite and the HAZ samples. However, as the corrosion potential (Eco^r) of the parent metal is more positive than other two samples, this becomes the cathode in galvanic couples with two other samples. On the other hand, the weld composite sample is also cathodic due to its more positive Ecorr compared to HAZ sample. This means that the HAZ can be particularly at risk of preferential dissolution. The approach can be used in specific areas on plain carbon steel to locally increase hardness and resistance to abrasion and reduce manufacturing costs.
基金the National Natural Science Foundation of China(No.51771079)the China Postdoctoral Science Foundation(No.2020M682650).
文摘Electrochemical impedance(EIS)and thin electrical resistance(ER)sensors were invented for atmospheric corrosion measurement of copper(Cu)during cyclic wetting−drying/high−low temperature tests and field exposure tests.Three-month field exposure results showed that average corrosion rate of Cu measured by ER sensor was well in accordance with that by weight loss method.During cyclic wetting−drying test,EIS was proven to reflect sensitively time of wetting and drying on the surface of sensor.Although corrosion rate obtained from EIS had a similar tendency to that obtained from ER sensors,the former was more dependent on environmental humidity than the latter.When relative humidity was low than 60%,corrosion rate of Cu measured by EIS was much lower than that by weight loss method,mainly attributing to the fact that impedance sensor failed to detect corrosion current of interlaced Cu electrodes due to the breakdown of conductive passage composed of absorbed thin liquid film under low humidity condition.Promisingly,ER sensor was proven to be more suitable for atmospheric corrosion monitoring than electrochemical techniques because it could sensitively monitor thickness loss of Cu foil according to the Ohmic law,no matter how dry or wet the sensor surface is.
基金Project(BE2010043) supported by the Technology Support Program of Jiangsu Province,ChinaProject(CXZZ13_0928) supported by the Graduate Education Innovation Project of Jiangsu Province,China
文摘The novel method to analyze metallic structure corrosion status was proposed in the presence of stray current in DC mass transit systems. Firstly, the characteristic parameter and the influence parameters for the corrosion status were determined. Secondly, an experimental system was established for simulating the corrosion process within the stray current interference. Then, a predictive model for the corrosion status was built, using a support vector machine(SVM) method and experimental data. The data were divided into two sets, including training set and testing set. The training set was used to generate the SVM model and the testing set was used to evaluate the predictive performance of the SVM model. The results show that the relationship between the characteristic parameter and the influence parameters is nonlinear and the SVM model is suitable for predicting the corrosion status.
基金Project(51675538)supported by the National Natural Science Foundation of China。
文摘Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than those with glass or aramid fiber.However,carbon fiber binding metal may lead to galvanic corrosion which limits its application.In this paper,electrochemical methods,optical microscope and scanning electron microscope were used to analyze the corrosion evolution of carbon fiber reinforced aluminum laminate(CARALL)in corrosive environment and explore anti-corrosion ways to protect CARALL.The results show that the connection between carbon fiber and aluminum alloy changes electric potential,causing galvanic corrosion.The galvanic corrosion will obviously accelerate CARALL corroded in solution,leading to a 72.1%decrease in interlaminar shear strength,and the crevice corrosion has a greater impact on CARALL resulting in delamination.The reduction of interlaminar shear strength has a similar linear relationship with the corrosion time.In addition,the adhesive layers between carbon fiber and aluminum alloy cannot protect CARALL,while side edge protection can effectively slow down corrosion rate.Therefore,the exposed edges should be coated with anti-corrosion painting.CARALL has the potential to be used for aerospace components.
基金Project(2007CB613705)supported by the National Basic Research Program of China
文摘The effects of trace element Fe on the corrosion behavior of AZ80 magnesium alloy were investigated by salt spray test and electrochemical measurements.The results show that the corrosion rate decreases with decreasing the trace element Fe content in an approximately linear relation even though the amount of trace element Fe reduces to 0.000 2%(mass fraction).The electrochemical measurements show that the corrosion potential(φcorr)of the alloy with lower trace element Fe content shifts to less negative value.It is suggested that the control trace element by purification is an effective way to enhance the corrosion resistance of AZ80 magnesium alloy.
基金Project(UKM-GUP-BTT-07-25-170) supported by Universiti Kebangsaan Malaysia
文摘The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated. Tafel polarization and electrochemical impedance spectroscopy (EIS) were used to investigate the influence of these organic compounds as corrosion inhibitors of mild steel in 1.0 mol/L HC1 solution at 30 ℃. The inhibition mechanism was discussed in terms of Langrnuir isotherm model. Results obtained from Tafel polarization and impedance measurements are in a good agreement. The inhibition efficiency increases with the increase of the inhibitor concentration. The adsorption of the inhibitors on the mild steel surface follows Langmuir adsorption isotherm and the free energy of adsorption AGads indicates that the adsorption of APTT, EDTA, and TU molecules is a spontaneous process and a typical chemisorption.
基金Project(2011CB610500)supported by the National Key Basic Research Program of ChinaProject(13JCZDJC29500)supported by the Natural Science Foundation of Tianjin Municipality,ChinaProject(20130032110029)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘The corrosion behavior of tinplate cans containing coffee was investigated using novel electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) sensors.The contents of iron and tin dissolved in cans were detected by inductively coupled plasma mass spectrometer(ICP-MS),and the morphology of corroded surface was observed by optical microscopy and scanning probe microscopy(SPM).The results reveal that the coating resistance,charge transfer resistance and noise resistance decrease with the prolongation of storage time.The iron and tin contents in cans increase with the storage time,while the bump height of coating surface increases from 30 nm to 80 nm during the corrosion of twelve months.The existence of deformation would enhance the corrosion process of tinplate cans.Finally,the corrosion mechanism of tinplate cans in coffee was proposed.
基金the UNSW ARC funded project,these companies includeAnglo American Coal,BHP Billiton,Centennial Coal,Glencore,Jennmar Australia and Whitehaven Coal
文摘University of New South Wales(UNSW Australia) had been involved in the study of premature failure of rock bolts in Australia coal mines from the initial identification of the problem in 1999. Rock bolt steel changes over the last decade appear to have not reduced the incidence of failures. A broadened UNSW research project funded by the Australian Research Council(ARC) and Industry has targeted finding the environmental causes through extensive field and laboratory experiments. This paper describes the field studies conducted in underground coal mines,in particular attempts to measure the contribution to corrosion from groundwater,mineralogy and microbial activity. Various underground survey techniques were used to determine the extent of broken bolts,with the presence of both stress corrosion cracking(SCC) and localized deep pitting making no single technique suitable on their own.Groundwater found dripping from bolts across various coalfields in Australia were found to be not aggressive and known groundwater corrosivity classification systems did not correlate to where broken bolts were found. In-hole coupon bolts placed in roof strata containing claystone bands confirmed the clay as being a major contributor to corrosion. Microbes capable of contributing to steel corrosion were found to be present in groundwater,and culturing of the microbes taken from in-situ coupon bolts proved that the bacteria was present on the bolt surface. An ‘in-hole bolt corrosion coupon' development by the project may have multiple benefits of (1) helping quantify newly developed corrosivity classification systems,(2) providing an in-situ ground support corrosion monitoring tool,and (3) for testing possible corrosion protection solutions.
基金Project(50901082)supported by the National Natural Science Foundation of ChinaProject(2007CB613705)supported by the National Basic Research Program of China
文摘The corrosion mechanism of AZ31 magnesium alloy used as automobile components and the influence of the concentration of Cl- ion in simulated acid rain(SAR)were studied by electrochemical tests and SEM.The results show that pitting corrosion happens around the AlMn phases locating at the grain boundary.The corrosion of AZ31 magnesium alloy in SAR is controlled by the rate of anodic dissolution and hydrogen evolution,and the corrosion rate of AZ31 increases with increasing concentration of Cl- ion.However,the Cl- ion in SAR is not the main influencing factor inducing the pitting corrosion.
基金Supported by National Key Basic Research Program of China ("973" Program, No. 2011CB610505)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120032110029)Key Project of Tianjin Natural Science Foundation (No. 13JCZDJC29500)
文摘The corrosion process of tinplate in deaerated functional beverage was investigated by using electrochemical impedance spectroscopy (EIS) combined with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The results reveal that the uncoated tinplate shows a poor corrosion resistance and the corrosion type is detinning. During the initial stage of immersion, EIS spectrum consisted of two capacitance arcs with obvious time-constant dispersion effect, which was attributed to the two-dimensional and three-dimensional inhomogeneous distribution of the electrode surface. With the increase of immersion time, the capacitance arc of high frequency shrunk and degenerated, due to the corrosion of tin coating. The pore resistance of tin coating and the charger transfer resistance of substrate, which are determined from the electrochemical equivalent circuit, can be used as the indicators of tinplate corrosion process. The decrease of the pore resistance of tin coating indicates that the corrosion degree of tin layer becomes more severe, whereas the decrease of the charger transfer resistance of substrate implies that the corrosion degree of steel substrate also becomes more severe as the immersion time prolongs.
文摘Pipeline of oil and gas have an increased risk because of pipeline punctures and rupture caused by corrosion. Therefore it is very important to have a reliable way for pipeline corrosion prediction. The corrosion depth prediction models that based on the support vector machines and chaos were introduced in this paper. A real example was given in this paper. The predicted results showed that the prediction models have a more higher precision. The two corrosion depth prediction models are reasonable in corrosion research, which can supply a scientific basis for pipeline safety management, service life prediction and repair.
文摘This paper evaluate subsoil corrosivity using the electrical resistivity method which was carried out to determine the subsoil resistivity and estimate the degree of corrosion, the resistivity measurements were conducted by using SAS300c resistivity meter. This involves applying a voltage into the soil through metal electrode and measuring the resistance to the flow of electric current. An AC-power supplies current flow (I) between two outer electrodes and the resultant voltage different (V) between two inner electrodes is measured using the Wenner Arrangement. The soil resistance given by R = V/I. This needs to be standardized over a unit length, the resistivity p which measured in ohm-m the equation is, ρ= 2ДdR. There are many factors control the ground resistivity such as soil composition, moisture content, pore water chemistry and pH. The results of the survey show inverse proportion between corrosivity and electrical resistivity, therefore resistivity method is very useful to incipient the corrosion as well as effective, quick, reliable and economic method. Structures such as natural gas, crude oil pipelines and steel constructions were reported to have been affected by soil corrosion all around the world, it can be concluded that sub soil corrosivity around the study area increases southwestern ward with depth.