针对传统集成学习方法忽略不同样本需使用不同模型权重的问题,提出一种基于类权重和最小化预测熵(class and entropy weights,CEW)的测试时集成方法。类权重为模型预测结果与验证集上各类概率对错分布的相似度,利用欧氏距离计算相识度;...针对传统集成学习方法忽略不同样本需使用不同模型权重的问题,提出一种基于类权重和最小化预测熵(class and entropy weights,CEW)的测试时集成方法。类权重为模型预测结果与验证集上各类概率对错分布的相似度,利用欧氏距离计算相识度;在最小化熵过程中,线性组合模型预测经过类权重模块加权后的输出,寻找最小预测熵对应的线性组合作为熵权重,提高集成模型预测能力。试验结果表明:在4个公开医学图像数据集上,CEW方法与最优单一模型相比,平均召回率提高0.23%~2.81%,准确率提高0.5%~2.54%;与DS方法相比,CEW方法平均召回率最多提高1.25%,准确率最多提高1.1%。基于CEW的测试时集成方法能够在测试时(无标签情况下)动态调整模型权重,比同类方法的预测精度更高。展开更多
文摘针对传统集成学习方法忽略不同样本需使用不同模型权重的问题,提出一种基于类权重和最小化预测熵(class and entropy weights,CEW)的测试时集成方法。类权重为模型预测结果与验证集上各类概率对错分布的相似度,利用欧氏距离计算相识度;在最小化熵过程中,线性组合模型预测经过类权重模块加权后的输出,寻找最小预测熵对应的线性组合作为熵权重,提高集成模型预测能力。试验结果表明:在4个公开医学图像数据集上,CEW方法与最优单一模型相比,平均召回率提高0.23%~2.81%,准确率提高0.5%~2.54%;与DS方法相比,CEW方法平均召回率最多提高1.25%,准确率最多提高1.1%。基于CEW的测试时集成方法能够在测试时(无标签情况下)动态调整模型权重,比同类方法的预测精度更高。