The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adj...The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adjustments is one of the key steps of alignment coupling. A methodology for position detection, and angle and spacing adjustment was proposed for optical waveguide chips and optical fiber arrays based on machine vision. The experimental results show angle detection precision levels higher than 0.05°, line detection precision levels higher than 0.1 μm, and detection time less than 2 s. Therefore, the system developed herein meets the precise requirements necessary for position detection, and angle and spacing adjustments for optical waveguide chips and optical fiber arrays.展开更多
This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a non-linear model. On the basis of the error defin...This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a non-linear model. On the basis of the error definition,this paper puts forward a new adjustment criterion, SGPE.Last,this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.展开更多
This paper presents a new design of a probe adjusting device intended to position pressure and temperature probes in a flow field. 5-hole, 3-hole and temperature probes can be moved in radial direction and freely rota...This paper presents a new design of a probe adjusting device intended to position pressure and temperature probes in a flow field. 5-hole, 3-hole and temperature probes can be moved in radial direction and freely rotated about their axis. The high actuation accuracy of 3.9 ktm in radial direction and 0.09~ in angular position is validated in a 2-stage-turbine test rig which is installed at the Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen University. To meet the challenge to calculate the efficiency of a turbo machine which is mainly influenced by the temperature, all probe adjusting devices are positioned simultaneously and controlled by the MAS (measuring acquisition system) so that the same radial position in each stage is measured at the same time. For this purpose a new program has been developed to synchronize actuation and measurement. The slim design of 60 mm width allows measurement between the stages of turbo machines with small axial distances between vane and blade. In addition a CFD/FEA shows how the design and combination of materials compensate the thermal expansion of the engine during operation. This allows a minimal safety distance of 0.2 mm between rotor and probe to enable measurement as close to the physical boundary as possible. The actuation accuracy is demonstrated with pressure, temperature and angle distribution plots. It is also shown that the resolution of the measuring points, and therefore the actuation distances, has a large impact on the flow field analysis and should be set as high as possible. However the measuring time has to be taken into account.展开更多
AltBOC(15,10) is the baseline of COMPASS B2 signal modulation.It is a BOC-like signal having different PN codes in the lower and the upper main split lobes,which allow one signal service per lobe.The two lobes can be ...AltBOC(15,10) is the baseline of COMPASS B2 signal modulation.It is a BOC-like signal having different PN codes in the lower and the upper main split lobes,which allow one signal service per lobe.The two lobes can be received and processed separately like two BPSK(10) signals,or coherently processed to achieve better performance.Interoperability among COMPASS B2,Galileo E5 and GPS L5 is also achievable using AltBOC modulation.However,Galileo's 4-code AltBOC has drawbacks such as low efficiency and great receiver complexity.This paper presents a new modulation type named TD-AltBOC (Time Division AltBOC).The signal generation scheme and receiving method are presented,and are compared with AltBOC in the areas of power spectrum,ranging accuracy,anti-multipath performance,anti-interference performance,processing flexibility and complexity.Analysis results show TD-AltBOC has similar spectrum characteristics,interoperability,flexibility and anti-interference performance with AltBOC.When the frontend bandwidth is more than 50 MHz,TD-AltBOC can achieve better ranging accuracy and anti-multipath performance.It also has such advantages as high efficiency and low receiver complexity.TD-AltBOC could be a good solution to COMPASS B2 navigation signal.展开更多
An all-metal 3-component optical fiber seismometer was proposed and experimentally demonstrated. The theoretical analysis was given based on the electro-mechanical theory. Calibration results showed that the axis sens...An all-metal 3-component optical fiber seismometer was proposed and experimentally demonstrated. The theoretical analysis was given based on the electro-mechanical theory. Calibration results showed that the axis sensitivity was about 41 dB (re: 0dB=1rad/g) with a fluctuation +2dB in the frequency bandwidth of 5 Hz - 400 Hz. A transverse sensitivity of about -40 dB was achieved. The fluctuation of the acceleration sensitivity for the three accelerometers in the seismometer was within ±2.5 dB. The minimum phase demodulation detection accuracy of the phase-generated cartier (PGC) was 10-Srad/√Hz, and the minimum detectable acceleration was calculated to be 90 ng/√Hz.展开更多
基金Projects(51475479,51075402)supported by the National Natural Science Foundation of ChinaProject(2012AA040406)supported by the National High Technology Research and Development Program of China+2 种基金Project(20110162130004)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(14JJ2010)supported by the Natural Science Foundation of Hunan Province,ChinaProject(GZKF-201401)supported by the Open Project of Stage Key Laboratory of Fluid Power Transmission and Control(Zhejiang University),China
文摘The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adjustments is one of the key steps of alignment coupling. A methodology for position detection, and angle and spacing adjustment was proposed for optical waveguide chips and optical fiber arrays based on machine vision. The experimental results show angle detection precision levels higher than 0.05°, line detection precision levels higher than 0.1 μm, and detection time less than 2 s. Therefore, the system developed herein meets the precise requirements necessary for position detection, and angle and spacing adjustments for optical waveguide chips and optical fiber arrays.
文摘This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a non-linear model. On the basis of the error definition,this paper puts forward a new adjustment criterion, SGPE.Last,this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.
文摘This paper presents a new design of a probe adjusting device intended to position pressure and temperature probes in a flow field. 5-hole, 3-hole and temperature probes can be moved in radial direction and freely rotated about their axis. The high actuation accuracy of 3.9 ktm in radial direction and 0.09~ in angular position is validated in a 2-stage-turbine test rig which is installed at the Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen University. To meet the challenge to calculate the efficiency of a turbo machine which is mainly influenced by the temperature, all probe adjusting devices are positioned simultaneously and controlled by the MAS (measuring acquisition system) so that the same radial position in each stage is measured at the same time. For this purpose a new program has been developed to synchronize actuation and measurement. The slim design of 60 mm width allows measurement between the stages of turbo machines with small axial distances between vane and blade. In addition a CFD/FEA shows how the design and combination of materials compensate the thermal expansion of the engine during operation. This allows a minimal safety distance of 0.2 mm between rotor and probe to enable measurement as close to the physical boundary as possible. The actuation accuracy is demonstrated with pressure, temperature and angle distribution plots. It is also shown that the resolution of the measuring points, and therefore the actuation distances, has a large impact on the flow field analysis and should be set as high as possible. However the measuring time has to be taken into account.
文摘AltBOC(15,10) is the baseline of COMPASS B2 signal modulation.It is a BOC-like signal having different PN codes in the lower and the upper main split lobes,which allow one signal service per lobe.The two lobes can be received and processed separately like two BPSK(10) signals,or coherently processed to achieve better performance.Interoperability among COMPASS B2,Galileo E5 and GPS L5 is also achievable using AltBOC modulation.However,Galileo's 4-code AltBOC has drawbacks such as low efficiency and great receiver complexity.This paper presents a new modulation type named TD-AltBOC (Time Division AltBOC).The signal generation scheme and receiving method are presented,and are compared with AltBOC in the areas of power spectrum,ranging accuracy,anti-multipath performance,anti-interference performance,processing flexibility and complexity.Analysis results show TD-AltBOC has similar spectrum characteristics,interoperability,flexibility and anti-interference performance with AltBOC.When the frontend bandwidth is more than 50 MHz,TD-AltBOC can achieve better ranging accuracy and anti-multipath performance.It also has such advantages as high efficiency and low receiver complexity.TD-AltBOC could be a good solution to COMPASS B2 navigation signal.
文摘An all-metal 3-component optical fiber seismometer was proposed and experimentally demonstrated. The theoretical analysis was given based on the electro-mechanical theory. Calibration results showed that the axis sensitivity was about 41 dB (re: 0dB=1rad/g) with a fluctuation +2dB in the frequency bandwidth of 5 Hz - 400 Hz. A transverse sensitivity of about -40 dB was achieved. The fluctuation of the acceleration sensitivity for the three accelerometers in the seismometer was within ±2.5 dB. The minimum phase demodulation detection accuracy of the phase-generated cartier (PGC) was 10-Srad/√Hz, and the minimum detectable acceleration was calculated to be 90 ng/√Hz.