Underwater Acoustic Sensor Network(UASN) has attracted significant attention because of its great influence on ocean exploration and monitoring. On account of the unique characteristics of underwater environment, loca...Underwater Acoustic Sensor Network(UASN) has attracted significant attention because of its great influence on ocean exploration and monitoring. On account of the unique characteristics of underwater environment, localization, as one of the fundamental tasks in UASNs, is a more challenging work than in terrestrial sensor networks. A survey of the ranging algorithms and the network architectures varied with different applications in UASNs is provided in this paper. Algorithms used to estimate the coordinates of the UASNs nodes are classified into two categories: rangebased and range-free. In addition, we analyze the architectures of UASNs based on different applications, and compare their performances from the aspects of communication cost, accuracy, coverage and so on. Open research issues which would affect the accuracy of localization are also discussed, including MAC protocols, sound speed and time synchronization.展开更多
Failure depth of coal seam floors is one of the important considerations that must be kept in mind when mining is carried out above a confined aquifer. In order to study the factors that affect the failure depth of co...Failure depth of coal seam floors is one of the important considerations that must be kept in mind when mining is carried out above a confined aquifer. In order to study the factors that affect the failure depth of coal seam floors such as mining depth, coal seam pitch, mining thickness, workface length and faults, we propose a combined artificial neural networks (ANN) prediction model for failure depth of coal seam floors on the basis of existing engineering data by using genetic algorithms to train the ANN. A practical engineering application at the Taoyuan Coal Mine indicates that this method can effectively determine the network struc- ture and training parameters, with the predicted results agreeing with practical measurements. Therefore, this method can be applied to relevant engineering projects with satisfactory results.展开更多
In modem protection relays, the accurate and fast fault location is an essential task for transmission line protection from the point of service restoration and reliability. The applications of neural networks based f...In modem protection relays, the accurate and fast fault location is an essential task for transmission line protection from the point of service restoration and reliability. The applications of neural networks based fault location techniques to transmission line are available in many papers. However, almost all the studies have so far employed the FNN (feed-forward neural network) trained with back-propagation algorithm (BPNN) which has a better structure and been widely used. But there are still many drawbacks if we simply use feed-forward neural network, such as slow training rate, easy to trap into local minimum point, and bad ability on global search. In this paper, feed-forward neural network trained by PSO (particle swarm optimization) algorithm is proposed for fault location scheme in 500 kV transmission system with distributed parameters presentation, The purpose is to simulate distance protection relay. The algorithm acts as classifier which requires phasor measurements data from one end of the transmission line and DFT (discrete Fourier transform). Extensive simulation studies carried out using MATLAB show that the proposed scheme has the ability to give a good estimation of fault location under various fault conditions.展开更多
基金supported by National Natural Science Foundation of China under Grants 61001067,61371093and 61172105Natural Science Foundation of Zhejiang Prov.China under Grants LY13D060001
文摘Underwater Acoustic Sensor Network(UASN) has attracted significant attention because of its great influence on ocean exploration and monitoring. On account of the unique characteristics of underwater environment, localization, as one of the fundamental tasks in UASNs, is a more challenging work than in terrestrial sensor networks. A survey of the ranging algorithms and the network architectures varied with different applications in UASNs is provided in this paper. Algorithms used to estimate the coordinates of the UASNs nodes are classified into two categories: rangebased and range-free. In addition, we analyze the architectures of UASNs based on different applications, and compare their performances from the aspects of communication cost, accuracy, coverage and so on. Open research issues which would affect the accuracy of localization are also discussed, including MAC protocols, sound speed and time synchronization.
基金Projects 50874103 supported by the National Natural Science Foundation of China2006CB202210 by the National Basic Research Program of China+1 种基金BK2008135 by the Natural Science Foundation of Jiangsu Provincethe Qing-lan Project of Jiangsu Province
文摘Failure depth of coal seam floors is one of the important considerations that must be kept in mind when mining is carried out above a confined aquifer. In order to study the factors that affect the failure depth of coal seam floors such as mining depth, coal seam pitch, mining thickness, workface length and faults, we propose a combined artificial neural networks (ANN) prediction model for failure depth of coal seam floors on the basis of existing engineering data by using genetic algorithms to train the ANN. A practical engineering application at the Taoyuan Coal Mine indicates that this method can effectively determine the network struc- ture and training parameters, with the predicted results agreeing with practical measurements. Therefore, this method can be applied to relevant engineering projects with satisfactory results.
文摘In modem protection relays, the accurate and fast fault location is an essential task for transmission line protection from the point of service restoration and reliability. The applications of neural networks based fault location techniques to transmission line are available in many papers. However, almost all the studies have so far employed the FNN (feed-forward neural network) trained with back-propagation algorithm (BPNN) which has a better structure and been widely used. But there are still many drawbacks if we simply use feed-forward neural network, such as slow training rate, easy to trap into local minimum point, and bad ability on global search. In this paper, feed-forward neural network trained by PSO (particle swarm optimization) algorithm is proposed for fault location scheme in 500 kV transmission system with distributed parameters presentation, The purpose is to simulate distance protection relay. The algorithm acts as classifier which requires phasor measurements data from one end of the transmission line and DFT (discrete Fourier transform). Extensive simulation studies carried out using MATLAB show that the proposed scheme has the ability to give a good estimation of fault location under various fault conditions.