Due to not requiring channel state information (CSI) at both the transmitter and the receiver, noncoherent ultra-wideband (UWB) incurs a performance penalty of approximately 3 dB in the required signal to noise ra...Due to not requiring channel state information (CSI) at both the transmitter and the receiver, noncoherent ultra-wideband (UWB) incurs a performance penalty of approximately 3 dB in the required signal to noise ratio (SNR) compared to the coherent case. To overcome the gap, an effective differential encoding and decoding scheme for multiband UWB systems is proposed. The proposed scheme employs the parallel concatenation of two recursive differential unitary space-frequency encoders at the transmitter. At the receiver, two component decoders iteratively decode information bits by interchanging soft metric values between each other. To reduce the computation complexity, a decoding algorithm which only uses transition probability to calculate the log likelihood ratios (LLRs) for the decoded bits is given. Simulation results show that the proposed scheme can dramatically outperform the conventional differential and even coherent detection at high SNR with a few iterations.展开更多
Maximum likelihood(ML) noncoherent block detection techniques are investigated for block-coded MPSK modulation in cooperative decode-and-forward relay systems over slow fading channels.A decision-directed iterative Vi...Maximum likelihood(ML) noncoherent block detection techniques are investigated for block-coded MPSK modulation in cooperative decode-and-forward relay systems over slow fading channels.A decision-directed iterative Viterbi algorithm(IVA) is derived for a suboptimal ML noncoherent detection.Simulation results show that the IVA can approach the error performances of the exhaustive detection method but at a lower complexity.展开更多
基金The Higher Education Technology Foundation of Huawei Technologies Co, Ltd (NoYJCB2005016WL)
文摘Due to not requiring channel state information (CSI) at both the transmitter and the receiver, noncoherent ultra-wideband (UWB) incurs a performance penalty of approximately 3 dB in the required signal to noise ratio (SNR) compared to the coherent case. To overcome the gap, an effective differential encoding and decoding scheme for multiband UWB systems is proposed. The proposed scheme employs the parallel concatenation of two recursive differential unitary space-frequency encoders at the transmitter. At the receiver, two component decoders iteratively decode information bits by interchanging soft metric values between each other. To reduce the computation complexity, a decoding algorithm which only uses transition probability to calculate the log likelihood ratios (LLRs) for the decoded bits is given. Simulation results show that the proposed scheme can dramatically outperform the conventional differential and even coherent detection at high SNR with a few iterations.
基金supported by the National Natural Science Foundation of China(61302095,61401165)the Natural Science Foundation of Fujian Province of China(2014J01243,2014J05076,2015J01262)the Huaqiao University Science Foundation(13Y0384)
文摘Maximum likelihood(ML) noncoherent block detection techniques are investigated for block-coded MPSK modulation in cooperative decode-and-forward relay systems over slow fading channels.A decision-directed iterative Viterbi algorithm(IVA) is derived for a suboptimal ML noncoherent detection.Simulation results show that the IVA can approach the error performances of the exhaustive detection method but at a lower complexity.