This work is concerned with consensus control for a class of leader-following multi-agentsystems (MASs).The information that each agent received is corrupted by measurement noises.Toreduce the impact of noises on cons...This work is concerned with consensus control for a class of leader-following multi-agentsystems (MASs).The information that each agent received is corrupted by measurement noises.Toreduce the impact of noises on consensus,time-varying consensus gains are adopted,based on whichconsensus protocols are designed.By using the tools of stochastic analysis and algebraic graph theory,asufficient condition is obtained for the protocol to ensure strong mean square consensus under the fixedtopologies.This condition is shown to be necessary and sufficient in the noise-free case.Furthermore,by using a common Lyapunov function,the result is extended to the switching topology case.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos. 60821091 and 60934006Part of this work was presented at the 17th IFAC World Congress, Seoul, Korea, July 2008
文摘This work is concerned with consensus control for a class of leader-following multi-agentsystems (MASs).The information that each agent received is corrupted by measurement noises.Toreduce the impact of noises on consensus,time-varying consensus gains are adopted,based on whichconsensus protocols are designed.By using the tools of stochastic analysis and algebraic graph theory,asufficient condition is obtained for the protocol to ensure strong mean square consensus under the fixedtopologies.This condition is shown to be necessary and sufficient in the noise-free case.Furthermore,by using a common Lyapunov function,the result is extended to the switching topology case.