Validating a method of analysis goes through different steps, which aims at testing the normality of measurements distribution, estimating the uncertainty of the components of a measurement (i.e., accuracy and correc...Validating a method of analysis goes through different steps, which aims at testing the normality of measurements distribution, estimating the uncertainty of the components of a measurement (i.e., accuracy and correctness), and finally, define the control tests of non degradation of the method performances. This paper outlines the steps for validating a biological method of analysis. It involves the construction of an experimental design, a statistical model, and the preparation of an interne laboratory reference material (pilot vaccine). The latter is used to study the impact of deviation and variation factors, in order to, optimize the analytical method, to evaluate the bias (random error), and to calculate the uncertainty of measurement, and make the control charts. This method is applied in the titration of live viral vaccines of Gumboro disease on chicken's embryos fibroblasts. The experimental results show that potential influence factors related to the titration method had no significant influence on the obtained results. Taking into account these results, an operating mode has been elaborated. The finalized method proved to be faithful to standard deviation of repeatability and reproducibility of 0.21 and 0.22, respectively, with a confidence level of 95%. The calculated uncertainty of measurement is equal to 0.2, which represents the average error level of a titer. A homogeneous stock of interne laboratory reference vaccine (MRIL), with an average titer of 5.9 log DIT 50, was produced and the control chart set in away to provide the laboratory with an important tool of control and monitoring of the viral titers evolution in time, as well as, the mastery of the validated titration method performances.展开更多
Surface-enhanced Raman spectroscopy(SERS) is an intense ongoing hot topic because it is an attractive tool for sensing or detecting molecules in trace amounts. Despite its high specificity and sensitivity, the SERS ...Surface-enhanced Raman spectroscopy(SERS) is an intense ongoing hot topic because it is an attractive tool for sensing or detecting molecules in trace amounts. Despite its high specificity and sensitivity, the SERS technique has not been established as a routine analytic method most likely due to the low reproducibility of the SERS signal. This review considers the influence factors to produce the poor reproducibility during the SERS measurement. This review starts with the discussion of calculation of surface-enhanced Raman intensity in order to explain the reason why it is so difficult to achieve a high reproducibility of SERS measurement from the origin of enhancement mechanism. Then we focus on the fabrication of SERS substrates generally including two types:① single particles and ② arrays on substrate that are directly used to detect molecules or other components.In addition, we discuss the molecule factors and optical system for the reproducibility for sample-to-sample or spot-to-spot on a substrate. In the final part of this review, some effects resulting in the irreproducibility of Raman bands' position from recent literatures are discussed.展开更多
文摘Validating a method of analysis goes through different steps, which aims at testing the normality of measurements distribution, estimating the uncertainty of the components of a measurement (i.e., accuracy and correctness), and finally, define the control tests of non degradation of the method performances. This paper outlines the steps for validating a biological method of analysis. It involves the construction of an experimental design, a statistical model, and the preparation of an interne laboratory reference material (pilot vaccine). The latter is used to study the impact of deviation and variation factors, in order to, optimize the analytical method, to evaluate the bias (random error), and to calculate the uncertainty of measurement, and make the control charts. This method is applied in the titration of live viral vaccines of Gumboro disease on chicken's embryos fibroblasts. The experimental results show that potential influence factors related to the titration method had no significant influence on the obtained results. Taking into account these results, an operating mode has been elaborated. The finalized method proved to be faithful to standard deviation of repeatability and reproducibility of 0.21 and 0.22, respectively, with a confidence level of 95%. The calculated uncertainty of measurement is equal to 0.2, which represents the average error level of a titer. A homogeneous stock of interne laboratory reference vaccine (MRIL), with an average titer of 5.9 log DIT 50, was produced and the control chart set in away to provide the laboratory with an important tool of control and monitoring of the viral titers evolution in time, as well as, the mastery of the validated titration method performances.
基金the National Natural Science Foundation of China(No.21375087)the Natural Science Foundation of Shanghai(No.13ZR1422100)
文摘Surface-enhanced Raman spectroscopy(SERS) is an intense ongoing hot topic because it is an attractive tool for sensing or detecting molecules in trace amounts. Despite its high specificity and sensitivity, the SERS technique has not been established as a routine analytic method most likely due to the low reproducibility of the SERS signal. This review considers the influence factors to produce the poor reproducibility during the SERS measurement. This review starts with the discussion of calculation of surface-enhanced Raman intensity in order to explain the reason why it is so difficult to achieve a high reproducibility of SERS measurement from the origin of enhancement mechanism. Then we focus on the fabrication of SERS substrates generally including two types:① single particles and ② arrays on substrate that are directly used to detect molecules or other components.In addition, we discuss the molecule factors and optical system for the reproducibility for sample-to-sample or spot-to-spot on a substrate. In the final part of this review, some effects resulting in the irreproducibility of Raman bands' position from recent literatures are discussed.