期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于测量协方差离散Kalman滤波估计算法的视频跟踪 被引量:2
1
作者 孙剑明 韩生权 赵志杰 《太赫兹科学与电子信息学报》 北大核心 2018年第2期244-248,共5页
视频中人体跟踪存在复杂性,尤其是对复杂背景下的人体上、下肢区域进行识别与跟踪时,传统算法存在一些问题。本文在传统Kalman滤波跟踪算法基础上,提出一种基于可变测量协方差的离散Kalman滤波人体识别算法。通过初始化测量协方差,用递... 视频中人体跟踪存在复杂性,尤其是对复杂背景下的人体上、下肢区域进行识别与跟踪时,传统算法存在一些问题。本文在传统Kalman滤波跟踪算法基础上,提出一种基于可变测量协方差的离散Kalman滤波人体识别算法。通过初始化测量协方差,用递归的方法从新获取的观测数据中计算出新的测量协方差估计量,通过离散Kalman滤波器进行跟踪。在实际的视频图像中,表现出良好的跟踪效果,并且对上肢、下肢及整个人体的区分以及部位跟踪方面都有很好的表现。相对于传统的Kalman滤波算法,本算法没有丢失跟踪目标的现象,跟踪速度适中,与人体行进速度保持一致,基本为1.5 m/s,特别适用于对视频中的人体行为进行跟踪及分析处理。 展开更多
关键词 测量协方差 离散Kalman滤波 部位跟踪 视频跟踪
下载PDF
基于实时图像的乒乓机器人Kalman跟踪算法 被引量:6
2
作者 张远辉 韦巍 虞旦 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第9期1580-1584,共5页
针对乒乓球高速运动图像模糊、空气阻力以及摄像机成像畸变等因素导致的误差问题,提出一种自适应测量协方差的离散Kalman轨迹估计算法.该算法通过动态调整测量协方差的大小,实现了对目标运动轨迹的准确跟踪,并进一步为乒乓球落点预测和... 针对乒乓球高速运动图像模糊、空气阻力以及摄像机成像畸变等因素导致的误差问题,提出一种自适应测量协方差的离散Kalman轨迹估计算法.该算法通过动态调整测量协方差的大小,实现了对目标运动轨迹的准确跟踪,并进一步为乒乓球落点预测和手臂击打奠定了基础.实验表明,在图像采集速率高于70帧/s、乒乓球速度超过5 m/s的情况下,该算法能有效地克服测量噪声和数据丢失的干扰情况的影响,给出优良的跟踪结果.同时该算法跟踪精度高,计算量小,适用于高速目标跟踪的场合. 展开更多
关键词 乒乓机器人 KALMAN滤波 实时跟踪 测量协方差
下载PDF
一种简化的锂离子电池SOC估计方法 被引量:4
3
作者 张卫平 雷歌阳 张晓强 《电源技术》 CAS CSCD 北大核心 2016年第7期1359-1361,共3页
为了克服安时积分法和开路电压法估计电池SOC的缺点,使用扩展卡尔曼滤波法将安时积分法与开路电压法结合起来。使用Thevenin等效电路电池模型作为扩展卡尔曼滤波法的模型基础,提出简化扩展卡尔曼滤波器过程噪声协方差和测量噪声协方差... 为了克服安时积分法和开路电压法估计电池SOC的缺点,使用扩展卡尔曼滤波法将安时积分法与开路电压法结合起来。使用Thevenin等效电路电池模型作为扩展卡尔曼滤波法的模型基础,提出简化扩展卡尔曼滤波器过程噪声协方差和测量噪声协方差的方法,使电池SOC估计误差接近开路电压法的水平。最后,通过DST实验验证提出的电池SOC估计方法。 展开更多
关键词 锂离子电池 SOC估计 Thevenin等效电路模型 扩展卡尔曼滤波法 过程噪声协方差 测量噪声协方差
下载PDF
自适应GPS扩展卡尔曼定位算法研究 被引量:3
4
作者 杨丽 胡方强 《电子技术应用》 北大核心 2016年第8期91-93,97,共4页
针对全球定位系统(GPS)信号定位过程中存在多径导致定位误差,尤其静态环境中零频差短多径引发的定位拖尾现象,提出了一种自适应估计多径残留的扩展卡尔曼滤波算法,实现了静态环境中零频差短多径抑制。首先量化地给出了基带多径抑制后的... 针对全球定位系统(GPS)信号定位过程中存在多径导致定位误差,尤其静态环境中零频差短多径引发的定位拖尾现象,提出了一种自适应估计多径残留的扩展卡尔曼滤波算法,实现了静态环境中零频差短多径抑制。首先量化地给出了基带多径抑制后的多径残留模型,即多径呈现"矩形"类型分布,以此为基础设计了一种自适应估计多径残留的方法,即在拟合窗口内估计伪距测量误差的均值和标准差,作为EKF算法的测量误差协方差矩阵,实现了EKF中多径的动态估计。最后通过仿真表明,本文的自适应估计多径残留的扩展卡尔曼滤波(ARKF)能有效抑制零频差短多径影响。 展开更多
关键词 多径 零频差 扩展卡尔曼滤波 测量误差协方差
下载PDF
Measurement of Incompatible Probability in Information Retrieval:A Case Study with User Clicks 被引量:1
5
作者 王博 侯越先 《Transactions of Tianjin University》 EI CAS 2013年第1期37-42,共6页
The incompatible probability represents an important non-classical phenomenon, and it describes conflicting observed marginal probabilities, which cannot be satisfied with a joint probability. First, the incompatibili... The incompatible probability represents an important non-classical phenomenon, and it describes conflicting observed marginal probabilities, which cannot be satisfied with a joint probability. First, the incompatibility of random variables was defined and discussed via the non-positive semi-definiteness of their covariance matrixes. Then, a method was proposed to verify the existence of incompatible probability for variables. A hypothesis testing was also applied to reexamine the likelihood of the observed marginal probabilities being integrated into a joint probability space, thus showing the statistical significance of incompatible probability cases. A case study with user click-through data provided the initial evidence of the incompatible probability in information retrieval (IR), particularly in user interaction. The experiments indicate that both incompatible and compatible cases can be found in IR data, and informational queries are more likely to be compatible than navigational queries. The results inspire new theoretical perspectives of modeling the complex interactions and phenomena in IR. 展开更多
关键词 incompatible probability semi-definiteness hypothesis testing information retrieval user clicks
下载PDF
Sensitivity of Near Real-time MODIS Gross Primary Productivity in Terrestrial Forests Based on Eddy Covariance Measurements 被引量:1
6
作者 TANG Xuguang LI Hengpeng +4 位作者 LIU Guihua LI Xinyan YAO Li XIE Jing CHANG Shouzhi 《Chinese Geographical Science》 SCIE CSCD 2015年第5期537-548,共12页
As an important product of Moderate Resolution Imaging Spectroradiometer(MODIS), MOD17A2 provides dramatic improvements in our ability to accurately and continuously monitor global terrestrial primary production, whic... As an important product of Moderate Resolution Imaging Spectroradiometer(MODIS), MOD17A2 provides dramatic improvements in our ability to accurately and continuously monitor global terrestrial primary production, which is also significant in effort to advance scientific research and eco-environmental management. Over the past decades, forests have moderated climate change by sequestrating about one-quarter of the carbon emitted by human activities through fossil fuels burning and land use/land cover change. Thus, the carbon uptake by forests reduces the rate at which carbon accumulates in the atmosphere. However, the sensitivity of near real-time MODIS gross primary productivity(GPP) product is directly constrained by uncertainties in the modeling process, especially in complicated forest ecosystems. Although there have been plenty of studies to verify MODIS GPP with ground-based measurements using the eddy covariance(EC) technique, few have comprehensively validated the performance of MODIS estimates(Collection 5) across diverse forest types. Therefore, the present study examined the degree of correspondence between MODIS-derived GPP and EC-measured GPP at seasonal and interannual time scales for the main forest ecosystems, including evergreen broadleaf forest(EBF), evergreen needleleaf forest(ENF), deciduous broadleaf forest(DBF), and mixed forest(MF) relying on 16 flux towers with a total of 68 site-year datasets. Overall, site-specific evaluation of multi-year mean annual GPP estimates indicates that the current MOD17A2 product works highly effectively for MF and DBF, moderately effectively for ENF, and ineffectively for EBF. Except for tropical forest, MODIS estimates could capture the broad trends of GPP at 8-day time scale for all other sites surveyed. On the annual time scale, the best performance was observed in MF, followed by ENF, DBF, and EBF. Trend analyses also revealed the poor performance of MODIS GPP product in EBF and DBF. Thus, improvements in the sensitivity of MOD17A2 to forest productivity require continued efforts. 展开更多
关键词 MOD 17A2 FLUXNET community eddy covariance (EC) gross primary productivity (GPP) forest ecosystem evaluation
下载PDF
人脸位姿协同的多新息抗扰滤波算法 被引量:1
7
作者 吴华静 李佳田 +3 位作者 林艳 张文靖 王聪聪 李键 《机器人》 EI CSCD 北大核心 2019年第6期722-730,共9页
在偏转角度较大时,人脸特征点的显著性明显减弱,会导致人脸位姿计算结果带有较大噪声.针对这一问题,提出了多新息抗扰滤波算法,将运动人脸与标准人脸模型的位姿变化作为滤波观测量:(1)引入多新息修正滤波估计,利用时间序列的多组观测量... 在偏转角度较大时,人脸特征点的显著性明显减弱,会导致人脸位姿计算结果带有较大噪声.针对这一问题,提出了多新息抗扰滤波算法,将运动人脸与标准人脸模型的位姿变化作为滤波观测量:(1)引入多新息修正滤波估计,利用时间序列的多组观测量估计人脸位姿变化的状态量;(2)实时判断滤波敛散性,根据多新息及时估计观测噪声协方差与过程噪声协方差,调整卡尔曼增益矩阵;(3)建立位姿协同模型,依据滤波后的人脸位姿变化计算相机运动参数,达到相机与人脸位姿协同.在给出试验装置硬件构成的基础上,将本文算法与自适应卡尔曼滤波(AKF)算法进行对比.试验结果表明,在人脸位姿协同系统中,本文算法位姿估计误差小于10 mm,相机协同时间约为25 ms,相较于AKF算法位姿准确度提高23%,协同效率提高30%,能够有效抑制位姿协同中人脸位姿计算所带来的噪声影响,在提高人脸位姿协同系统稳定性的同时,保证响应的实时性. 展开更多
关键词 人脸位姿协同 敛散性 多新息 观测噪声协方差 测量噪声协方差
原文传递
Experimental measurement of covariance matrix of two-mode entangled state 被引量:2
8
作者 YU XuDong LI Wei +1 位作者 JIN YuanBin ZHANG Jing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第5期875-879,共5页
A two-mode entangled state was generated experimentally through mixing two squeezed lights from two optical parametric amplifiers on a 50/50 beam splitter.The entangled beams were measured by means of two pairs of bal... A two-mode entangled state was generated experimentally through mixing two squeezed lights from two optical parametric amplifiers on a 50/50 beam splitter.The entangled beams were measured by means of two pairs of balanced homodyne detection systems respectively.The relative phases between the local beams and the detected beams can be locked by using the optical phase modulation technique.The covariance matrix of the two-mode entangled state was obtained when the relative phase of the local beam and the detected beam in one homodyne detection system is locked and the other is scanned.This method provides a way by which one can extract the covariance matrix of any selected quadrature components of two-mode Gaussian state. 展开更多
关键词 optical parametric amplifier Gaussian entangled state covariance matrix
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部