Wind electricity power has fluctuation, and accurate and reasonable wind electricity power prediction is very important for solving wind electricity network and combination. This paper takes an analysis of a lot of ac...Wind electricity power has fluctuation, and accurate and reasonable wind electricity power prediction is very important for solving wind electricity network and combination. This paper takes an analysis of a lot of actual data of a certain wind electricity field. Through wavelet neural network and time series method rolling, it can predict the overall power of wind electricity field. The result shows that for the original data of sampling time length and large sampling frequency, the model constructed by this paper has very good prediction effect. Because of the fan installation position, wind electricity fan flow effect and other random factor influence, wind electricity field overall power and single unit power distribution have difference. Through comparing with the time series parameters, it puts forward that single wind electricity unit power has smooth effect for overall power of wind electricity field. Finally, it summarizes the prediction effect and puts forward some reasonable suzestions for wind electricity network troblems.展开更多
The electric energy which is generated by wind power plants depends on the wind speed and exceeds with strong permissible wind speed the electric energy requirements of the country. In order not to reduce this electri...The electric energy which is generated by wind power plants depends on the wind speed and exceeds with strong permissible wind speed the electric energy requirements of the country. In order not to reduce this electrical energy, it must be stored. The sensible energy storage is currently the pumped storage power plants. As the mountain ranges for conventional pumped storage power plants with drop heights of H 〉 600 m are strictly limited, the development of low potential pumped storage power plants has begun. Increasing the capacity of pumped storage power plants with regard to the wind power plants is urgently needed. In this paper, it is shown using the example of an unneeded port facility, how a port facility can be used after low conversion as a test facility for low potential pumped storage power plants and at the same time for the testing of hydro-kinetic turbines. This type of pump storage power plants does not save the energy due to large drop heights, but primarily due to the large volume flow of water.展开更多
The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled com...The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled compensator (TGR) and magnetically controlled reactor (MGR). The lack of experimental verification of performance is not conducive to voltage/var management or full utilization of device capaci- ties. In order to solve the above problems, the compensation device performance test was performed. The test items and procedures were selected based on related national standards with the consideration for different grid structures and wind farm operation modes. The testing contents included dynamic regulating range, active power loss, dynamic response time, and harmonic voltage level. Three types of compensation devices installed in different wind farms, namely SVG, TCR and MCR, were chosen and tested. The performances were compared and analyzed according to the field test results.展开更多
文摘Wind electricity power has fluctuation, and accurate and reasonable wind electricity power prediction is very important for solving wind electricity network and combination. This paper takes an analysis of a lot of actual data of a certain wind electricity field. Through wavelet neural network and time series method rolling, it can predict the overall power of wind electricity field. The result shows that for the original data of sampling time length and large sampling frequency, the model constructed by this paper has very good prediction effect. Because of the fan installation position, wind electricity fan flow effect and other random factor influence, wind electricity field overall power and single unit power distribution have difference. Through comparing with the time series parameters, it puts forward that single wind electricity unit power has smooth effect for overall power of wind electricity field. Finally, it summarizes the prediction effect and puts forward some reasonable suzestions for wind electricity network troblems.
文摘The electric energy which is generated by wind power plants depends on the wind speed and exceeds with strong permissible wind speed the electric energy requirements of the country. In order not to reduce this electrical energy, it must be stored. The sensible energy storage is currently the pumped storage power plants. As the mountain ranges for conventional pumped storage power plants with drop heights of H 〉 600 m are strictly limited, the development of low potential pumped storage power plants has begun. Increasing the capacity of pumped storage power plants with regard to the wind power plants is urgently needed. In this paper, it is shown using the example of an unneeded port facility, how a port facility can be used after low conversion as a test facility for low potential pumped storage power plants and at the same time for the testing of hydro-kinetic turbines. This type of pump storage power plants does not save the energy due to large drop heights, but primarily due to the large volume flow of water.
文摘The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled compensator (TGR) and magnetically controlled reactor (MGR). The lack of experimental verification of performance is not conducive to voltage/var management or full utilization of device capaci- ties. In order to solve the above problems, the compensation device performance test was performed. The test items and procedures were selected based on related national standards with the consideration for different grid structures and wind farm operation modes. The testing contents included dynamic regulating range, active power loss, dynamic response time, and harmonic voltage level. Three types of compensation devices installed in different wind farms, namely SVG, TCR and MCR, were chosen and tested. The performances were compared and analyzed according to the field test results.