格陵兰冰盖全部融化将导致全球海平面上升7m,因此准确估计格陵兰冰盖质量变化过程对理解其对全球气候变化响应和反馈作用具有重要意义。基于Gravity Recovery and Climate Experiment(GRACE)卫星及后继卫星GRACE-FollowOn(GRACE-FO)提...格陵兰冰盖全部融化将导致全球海平面上升7m,因此准确估计格陵兰冰盖质量变化过程对理解其对全球气候变化响应和反馈作用具有重要意义。基于Gravity Recovery and Climate Experiment(GRACE)卫星及后继卫星GRACE-FollowOn(GRACE-FO)提供的近20年的月时变重力场数据,以及EuropeanRemote Sensing(ERS-2)、Envisat和CryoSat-2等卫星测高数据,本文对比分析了2002年4月-2020年12月格陵兰冰盖质量变化特征。研究结果表明:(1)卫星重力点质量模型与卫星测高产品估计的质量变化趋势空间分布较为一致,均表明格陵兰冰盖边缘低海拔区域质量亏损严重而内部高原存在质量累积。(2) 2002-2020年格陵兰质量损失对全球平均海平面变化贡献为0.73±0.01mm·a^(-1)。(3)格陵兰冰盖西南部和西北部对海平面变化的贡献占格陵兰总贡献量的43.69%,为主要的海平面上升贡献区。(4)格陵兰冰盖流域尺度的分析表明,Goddard Space Flight Center(GSFC)点质量模型与卫星测高估计的结果更为一致。展开更多
This paper focuses on the study of ocean bathymetric inversion from satellite altimeter data by using FFT technique.In this study,the freeair gravity anomalies over the South China Sea are determined by the satellite ...This paper focuses on the study of ocean bathymetric inversion from satellite altimeter data by using FFT technique.In this study,the freeair gravity anomalies over the South China Sea are determined by the satellite altimeter data of GEOSAT,ERS1,ERS2 and T/P.And the 2.5′×2.5′ bathymetry model in South China Sea is calculated from the gravity anomalies with the inversion model given.After the analysis of the inversion and the comparison between the results,some conclusions can be drawn.展开更多
Sea level variations(SLVs) can be divided into two major components:the steric SLV and the mass-induced SLV.These two components of SLV in the South China Sea(SCS) are studied by using satellite altimetry,GRACE(Gravit...Sea level variations(SLVs) can be divided into two major components:the steric SLV and the mass-induced SLV.These two components of SLV in the South China Sea(SCS) are studied by using satellite altimetry,GRACE(Gravity Recovery and Climate Experiment) satellite gravity,and oceanographic data on annual and inter-annual timescales.On the annual timescale,the geographic distribution of mass-induced SLV's amplitude jointly estimated from altimetry and the ECCO(Estimation of the Circulation and Climate of the Ocean) model agrees very well with that from GRACE.GRACE observes obvious seasonal mass-induced SLV in the SCS with annual amplitude of 2.7±0.4 cm,which is consistent with the annual amplitude of 2.7±0.3 cm estimated from the steric-corrected altimetry.On the inter-annual timescales,the mean SLV in the SCS shows a large oscillation,which is mainly caused by the steric effect.The trend of mean SLV inferred from altimetry in the SCS is 5.5±0.7 mm/yr for the period of 1993-2009,which is significantly higher than the global sea level rise rate of 3.3±0.4 mm/yr in the same period.There is no obvious trend signal in the mass-induced SLV detected from GRACE that indicates the water exchange between the SCS and its adjacent seas and land is in balance within the study period.展开更多
Dual-well steam assisted gravity drainage(SAGD) has significant potential for extra-heavy oil recovery.China is conducting two dual-well SAGD pilot projects in the Fengcheng extra-heavy oil reservoir.Quick,direct pred...Dual-well steam assisted gravity drainage(SAGD) has significant potential for extra-heavy oil recovery.China is conducting two dual-well SAGD pilot projects in the Fengcheng extra-heavy oil reservoir.Quick,direct predictions of the oil production rate by algebraic models rather than complex numerical models are of great importance for designing and adjusting the SAGD operations.A low-pressure scaled physical simulation was previously used to develop two separate theoretical models corresponding to the two different growth stages observed in the SAGD steam chambers,which are the steam chamber rising stage and the steam chamber spreading stage.A high-pressure scaled model experiment is presented here for one dual-well SAGD pattern to further improve the prediction models to reasonably predict oil production rates for full production.Parameters that significantly affect the oil recovery during SAGD were scaled for the model size based on the reservoir characteristics of the Fengcheng reservoir in China.Experimental results show the relationship between the evolution of the steam chamber and the oil production rate during the entire production stage.High-pressure scaled model test was used to improve the gravity drainage models by modifying empirical factors for the rising model and the depletion model.A new division of the SAGD production regime was developed based on the relationship between the oil production rate and the evolution of steam chamber.A method was developed to couple the rising and depletion models to predict oil production rates during the SAGD production,especially during the transition period.The method was validated with experiment data and field data from the literature.The model was then used to predict the oil production rate in the Fengcheng reservoir in China and the Athabasca reservoir in Canada.展开更多
文摘格陵兰冰盖全部融化将导致全球海平面上升7m,因此准确估计格陵兰冰盖质量变化过程对理解其对全球气候变化响应和反馈作用具有重要意义。基于Gravity Recovery and Climate Experiment(GRACE)卫星及后继卫星GRACE-FollowOn(GRACE-FO)提供的近20年的月时变重力场数据,以及EuropeanRemote Sensing(ERS-2)、Envisat和CryoSat-2等卫星测高数据,本文对比分析了2002年4月-2020年12月格陵兰冰盖质量变化特征。研究结果表明:(1)卫星重力点质量模型与卫星测高产品估计的质量变化趋势空间分布较为一致,均表明格陵兰冰盖边缘低海拔区域质量亏损严重而内部高原存在质量累积。(2) 2002-2020年格陵兰质量损失对全球平均海平面变化贡献为0.73±0.01mm·a^(-1)。(3)格陵兰冰盖西南部和西北部对海平面变化的贡献占格陵兰总贡献量的43.69%,为主要的海平面上升贡献区。(4)格陵兰冰盖流域尺度的分析表明,Goddard Space Flight Center(GSFC)点质量模型与卫星测高估计的结果更为一致。
文摘This paper focuses on the study of ocean bathymetric inversion from satellite altimeter data by using FFT technique.In this study,the freeair gravity anomalies over the South China Sea are determined by the satellite altimeter data of GEOSAT,ERS1,ERS2 and T/P.And the 2.5′×2.5′ bathymetry model in South China Sea is calculated from the gravity anomalies with the inversion model given.After the analysis of the inversion and the comparison between the results,some conclusions can be drawn.
基金supported by the Chinese Academy of Sciences (Grant No. KZCX2-YW-143)National Natural Science Foundation of China (Grant Nos. 40974045,41021003)Open Fund in KLDG/IGG (Grant No. L09-18)
文摘Sea level variations(SLVs) can be divided into two major components:the steric SLV and the mass-induced SLV.These two components of SLV in the South China Sea(SCS) are studied by using satellite altimetry,GRACE(Gravity Recovery and Climate Experiment) satellite gravity,and oceanographic data on annual and inter-annual timescales.On the annual timescale,the geographic distribution of mass-induced SLV's amplitude jointly estimated from altimetry and the ECCO(Estimation of the Circulation and Climate of the Ocean) model agrees very well with that from GRACE.GRACE observes obvious seasonal mass-induced SLV in the SCS with annual amplitude of 2.7±0.4 cm,which is consistent with the annual amplitude of 2.7±0.3 cm estimated from the steric-corrected altimetry.On the inter-annual timescales,the mean SLV in the SCS shows a large oscillation,which is mainly caused by the steric effect.The trend of mean SLV inferred from altimetry in the SCS is 5.5±0.7 mm/yr for the period of 1993-2009,which is significantly higher than the global sea level rise rate of 3.3±0.4 mm/yr in the same period.There is no obvious trend signal in the mass-induced SLV detected from GRACE that indicates the water exchange between the SCS and its adjacent seas and land is in balance within the study period.
基金supported by the National Key Science and Technology Project of China (Grant No. 2011ZX05012)
文摘Dual-well steam assisted gravity drainage(SAGD) has significant potential for extra-heavy oil recovery.China is conducting two dual-well SAGD pilot projects in the Fengcheng extra-heavy oil reservoir.Quick,direct predictions of the oil production rate by algebraic models rather than complex numerical models are of great importance for designing and adjusting the SAGD operations.A low-pressure scaled physical simulation was previously used to develop two separate theoretical models corresponding to the two different growth stages observed in the SAGD steam chambers,which are the steam chamber rising stage and the steam chamber spreading stage.A high-pressure scaled model experiment is presented here for one dual-well SAGD pattern to further improve the prediction models to reasonably predict oil production rates for full production.Parameters that significantly affect the oil recovery during SAGD were scaled for the model size based on the reservoir characteristics of the Fengcheng reservoir in China.Experimental results show the relationship between the evolution of the steam chamber and the oil production rate during the entire production stage.High-pressure scaled model test was used to improve the gravity drainage models by modifying empirical factors for the rising model and the depletion model.A new division of the SAGD production regime was developed based on the relationship between the oil production rate and the evolution of steam chamber.A method was developed to couple the rising and depletion models to predict oil production rates during the SAGD production,especially during the transition period.The method was validated with experiment data and field data from the literature.The model was then used to predict the oil production rate in the Fengcheng reservoir in China and the Athabasca reservoir in Canada.