Tomato seedlings were grown in substrate culture with pots. The formulation of Holland Greenhouse Horticulture Research Institute was used(as CK) and the effects of different Ca concentrations(LCa, CK and HCa)on growt...Tomato seedlings were grown in substrate culture with pots. The formulation of Holland Greenhouse Horticulture Research Institute was used(as CK) and the effects of different Ca concentrations(LCa, CK and HCa)on growth, yield, and fruit quality(protein, Vitamin C, nitrates, organic acid and soluble sugar) of tomato were studied keeping concentrations of other nutrients unchanged in the nutrient solution. The results showed that parameters related to the growth of tomato(plant height and Stem diameter), changes of tomato yield per plant and quality of tomato fruits were the highest when the plants were grown at 20% Ca treatments. In the second study, increased EC concentrations of nutrient solution resulted in stronger plants with improved yields and quality. Four different concentration gradients of nutrient solution treatment were designed based on the results of the first research stage(EC=1.5, 2.5, 3.5, 4.5 m S/cm, respectively). The single tomato plant had the highest production which is 2 268.994 g/plant, when the nutrient solution strength was at EC=1.5 m S cm, whereas they have the best fruit quality when the solution strength at EC 4.5 m S/cm. This suggests the need for wide popularization of the nutrient solution formula in large areas to improve the tomato production.展开更多
The Red Soil Hilly Region in South China, where there is a high capacity of carbon(C), and the land use and vegetation cover change greatly, is an important ecological area in the world, and has an important impact on...The Red Soil Hilly Region in South China, where there is a high capacity of carbon(C), and the land use and vegetation cover change greatly, is an important ecological area in the world, and has an important impact on the global carbon cycle and the seasonal fluctuation of atmospheric CO_2. To better evaluate the effects of reclamation systems in orchards converted from grasslands on soil carbon sequestration, we investigated soil organic carbon(SOC) content and stable C isotope(δ^(13)C)composition in three nectarine orchards at Yuchi Experimental Station in South China. Compared with the sloping clean tillage orchard and terraced clean tillage orchard, SOC content in the terraced orchard with grass cover was increased by 14.90% to 38.49%, and 7.40% to 15.33%, respectively. During the 14 years after orchard establishment, the soil organic matter sources influenced both δ^(13)C distribution with depth and carbon replacement. SOC turnover of the upper soil layer in the terraced orchard with grass cover(a mean 63.05% of replacement in the 20 cm after 14 years) was 1.59 and 1.41 times larger than that of the sloping clean tillage orchard and terraced clean tillage orchard under subtropical conditions, respectively. The equilibrium value of soil organic carbon in the three treatments ranged from 16.067 to 25.608 g/kg under the experimental conditions. The equilibrium value of soil organic carbon in the surface layer under grass cover was 54.801 t/hm^2, and the carbon sequestration potential was 24.695 1 t/hm^2.展开更多
文摘Tomato seedlings were grown in substrate culture with pots. The formulation of Holland Greenhouse Horticulture Research Institute was used(as CK) and the effects of different Ca concentrations(LCa, CK and HCa)on growth, yield, and fruit quality(protein, Vitamin C, nitrates, organic acid and soluble sugar) of tomato were studied keeping concentrations of other nutrients unchanged in the nutrient solution. The results showed that parameters related to the growth of tomato(plant height and Stem diameter), changes of tomato yield per plant and quality of tomato fruits were the highest when the plants were grown at 20% Ca treatments. In the second study, increased EC concentrations of nutrient solution resulted in stronger plants with improved yields and quality. Four different concentration gradients of nutrient solution treatment were designed based on the results of the first research stage(EC=1.5, 2.5, 3.5, 4.5 m S/cm, respectively). The single tomato plant had the highest production which is 2 268.994 g/plant, when the nutrient solution strength was at EC=1.5 m S cm, whereas they have the best fruit quality when the solution strength at EC 4.5 m S/cm. This suggests the need for wide popularization of the nutrient solution formula in large areas to improve the tomato production.
基金Supported by Science and Technology Program of Fujian Province(2017R1016-4)Natural Science Foundation of Fujian Province(2017J01072)
文摘The Red Soil Hilly Region in South China, where there is a high capacity of carbon(C), and the land use and vegetation cover change greatly, is an important ecological area in the world, and has an important impact on the global carbon cycle and the seasonal fluctuation of atmospheric CO_2. To better evaluate the effects of reclamation systems in orchards converted from grasslands on soil carbon sequestration, we investigated soil organic carbon(SOC) content and stable C isotope(δ^(13)C)composition in three nectarine orchards at Yuchi Experimental Station in South China. Compared with the sloping clean tillage orchard and terraced clean tillage orchard, SOC content in the terraced orchard with grass cover was increased by 14.90% to 38.49%, and 7.40% to 15.33%, respectively. During the 14 years after orchard establishment, the soil organic matter sources influenced both δ^(13)C distribution with depth and carbon replacement. SOC turnover of the upper soil layer in the terraced orchard with grass cover(a mean 63.05% of replacement in the 20 cm after 14 years) was 1.59 and 1.41 times larger than that of the sloping clean tillage orchard and terraced clean tillage orchard under subtropical conditions, respectively. The equilibrium value of soil organic carbon in the three treatments ranged from 16.067 to 25.608 g/kg under the experimental conditions. The equilibrium value of soil organic carbon in the surface layer under grass cover was 54.801 t/hm^2, and the carbon sequestration potential was 24.695 1 t/hm^2.