期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
评价彰显科学素养 试题考查深度学习 ——2020年无锡市物理中考卷第23题(3)小题的解析
1
作者 钱哲非 《试题与研究(教学论坛)》 2020年第35期125-125,共1页
中考题对课堂教学起导向作用,在提倡科学素养的指导下,如何命题能符合课程标准,鉴别学生是否深度学习,反馈学生科学思维能力,切合鉴定学生是否经过实践操作训练还是在反复大量纸笔练习。下文就2020年无锡物理中考试题为例做探讨。
关键词 中考物理 科学素养 浓度学习
下载PDF
基于离散余弦变换和主成分分析的光照条件人脸识别 被引量:3
2
作者 鲁秋菊 郭天印 任民宏 《激光杂志》 北大核心 2015年第4期126-130,共5页
在光照变化条件下,人脸识别的正确率急剧下降,为了解决该难题,提出了一种离散余弦变换和主成分分析相融合的光照变化条件人脸识别方法。首先对人脸图像进行分块,并采用离散余弦变换对每一个子块提取DCT系数,然后采用主成分分析提取人脸... 在光照变化条件下,人脸识别的正确率急剧下降,为了解决该难题,提出了一种离散余弦变换和主成分分析相融合的光照变化条件人脸识别方法。首先对人脸图像进行分块,并采用离散余弦变换对每一个子块提取DCT系数,然后采用主成分分析提取人脸特征,并采用深度学习算法建立人脸识别的分类器,最后采用ORL和Yale B人脸库进行仿真实验,测试其有效性和优越性。实验结果表明,相比其它光照人脸识别方法,本文方法提高了光照人脸图像的识别率,消除了光照变化的不利影响,具有较强的鲁棒性。 展开更多
关键词 光照条件 离散余弦变换 特征提取 浓度学习 主成分分析
下载PDF
基于波动特性挖掘的短期光伏功率预测 被引量:14
3
作者 吉锌格 李慧 +1 位作者 叶林 王丽婕 《太阳能学报》 EI CAS CSCD 北大核心 2022年第5期146-155,共10页
综合考虑光伏功率受气象因素影响所呈现出的规律性和波动性,对光伏功率波动类型进行划分与聚类识别提出一种基于波动特性挖掘的短期光伏功率预测方法,。在此基础上,利用数值天气预报和基于互信息熵的相关性分析法提取各类功率波动对应... 综合考虑光伏功率受气象因素影响所呈现出的规律性和波动性,对光伏功率波动类型进行划分与聚类识别提出一种基于波动特性挖掘的短期光伏功率预测方法,。在此基础上,利用数值天气预报和基于互信息熵的相关性分析法提取各类功率波动对应的天气波动特征及其强相关气象因子,建立基于波动特性挖掘的长短期记忆网络组合预测模型,挖掘天气波动与光伏功率波动之间的潜在映射规律。最后,识别出待测日天气波动类型与预测模型之间的匹配关系,利用组合预测模型实现光伏功率预测。通过对中国西北地区某光伏电站的预测分析,验证了所提预测方法的有效性。 展开更多
关键词 光伏发电 功率预测 数据挖掘 波动 浓度学习 信息熵
下载PDF
Prediction of dust fall concentrations in urban atmospheric environment through support vector regression 被引量:2
4
作者 焦胜 曾光明 +3 位作者 何理 黄国和 卢宏玮 高青 《Journal of Central South University》 SCIE EI CAS 2010年第2期307-315,共9页
Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study... Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study presents four SVR models by selecting linear, radial basis, spline, and polynomial functions as kernels, respectively for the prediction of urban dust fall levels. The inputs of the models are identified as industrial coal consumption, population density, traffic flow coefficient, and shopping density coefficient. The training and testing results show that the SVR model with radial basis kernel performs better than the other three both in the training and testing processes. In addition, a number of scenario analyses reveal that the most suitable parameters (insensitive loss function e, the parameter to reduce the influence of error C, and discrete level or average distribution of parameters σ) are 0.001, 0.5, and 2 000, respectively. 展开更多
关键词 support vector regression urban air quality dust fall soeio-economic factors radial basis function
下载PDF
Modelling of a post-combustion CO2 capture process using extreme learning machine
5
作者 Fei Li Jie Zhang +1 位作者 Eni Oko Meihong Wang 《International Journal of Coal Science & Technology》 EI 2017年第1期33-40,共8页
This paper presents modelling of a post-combustion CO2 capture process using bootstrap aggregated extreme learning machine (ELM). ELM randomly assigns the weights between input and hidden layers and obtains the weig... This paper presents modelling of a post-combustion CO2 capture process using bootstrap aggregated extreme learning machine (ELM). ELM randomly assigns the weights between input and hidden layers and obtains the weights between the hidden layer and output layer using regression type approach in one step. This feature allows an ELM model being developed very quickly. This paper proposes using principal component regression to obtain the weights between the hidden and output layers to address the collinearity issue among hidden neuron outputs. Due to the weights between input and hidden layers are randomly assigned, ELM models could have variations in performance. This paper proposes combining multiple ELM models to enhance model prediction accuracy and reliability. To predict the CO2 production rate and CO2 capture level, eight parameters in the process were utilized as model input variables: inlet gas flow rate, CO2 concentration in inlet flow gas, inlet gas temperature, inlet gas pressure, lean solvent flow rate, Jean solvent temperature, lean loading and reboiler duty. The bootstrap re-sampling of training data was applied for building each single ELM and then the individual ELMs are stacked, thereby enhancing the model accuracy and reliability. The bootstrap aggregated extreme learning machine can provide fast learning speed and good generalization performance, which will be used to optimize the CO2 capture process. 展开更多
关键词 CO2 capture Neural networks Data-driven modelling Extreme learning machine
下载PDF
Interleukin-1β with learning and memory
6
作者 黄振波 盛国庆 《Neuroscience Bulletin》 SCIE CAS CSCD 2010年第6期455-468,共14页
Interleukin-1β(IL-1β)is one of the first cytokines ever described.It has long been recognized to play an important role in mediating inflammation and orchestrating the physiological and behavioral adjustments that... Interleukin-1β(IL-1β)is one of the first cytokines ever described.It has long been recognized to play an important role in mediating inflammation and orchestrating the physiological and behavioral adjustments that occur during sickness. Recently,accumulating evidence has indicated that IL-1β also adversely affects cognitive function.Nevertheless,there are also some reports showing no effects or even beneficial effects of IL-1β on learning and memory.The relationship between IL-1β and cognitive impairment has not been clearly elucidated.Here we reviewed the evidence of both negative and positive effects of IL-1β on learning and memory,and the key factors that may affect the effects of IL-1β on learning and memory were discussed. 展开更多
关键词 INTERLEUKIN-1Β LEARNING MEMORY DOSE age memory type memory stage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部