[Objective] The aim was to explore effects of silicon at different concentrations on morphology and photosynthetic physiological mechanism of japonica rice. [Method] Seedlings of japonica rice were treated with silico...[Objective] The aim was to explore effects of silicon at different concentrations on morphology and photosynthetic physiological mechanism of japonica rice. [Method] Seedlings of japonica rice were treated with silicon at different concentrations (0, 30, 80, 130 and 180 mg/L of sodium silicate); silicon contents were measured with Molybdenum blue spectrophotometric method in root, stem and leaf; plant height, root length and number in different treatment groups were measured with tools; chlorophyll a and b, and a/b in leaf and stem of rice in different groups were measured. [Result] Silicon contents in vegetative organs were as follows: stem〉leaf〉 root; when silicon was 80 mg/L, japonica ecotype was shortest; when silicon was 30 mg/L, root length of the rice was shortest and root number was least; when silicon was 30 mg/L, contents of chlorophyll a and b were highest and chlorophyll a/b achieved the peak when silicon was 80 mg/L. [Conclusion] Silicon at proper concen- tration would improve lodging-resistance and efficiency of photosynthesis, further enhancing yield of japonica rice.展开更多
This paper is aimed at the actual conditions of disaster caused by gas in small and medium-sized coal mines. A new gas concentration monitoring system for coal mines is developed on the basis of gas-sensing detection ...This paper is aimed at the actual conditions of disaster caused by gas in small and medium-sized coal mines. A new gas concentration monitoring system for coal mines is developed on the basis of gas-sensing detection and single-chip control. The monitoring system uses the tin oxide as the main material of N-type semiconductor gas sensors, be- cause it has good sensitive characteristics for the flammable and explosive gas ( such as methane, carbon monoxide). The QM-N5-semiconductor gas sensor is adopted to detect the output values of the resistance under the different gas con- centrations. The system, designedly, takes the AT89C51 digital chip as the core of the circuit processing hardware structure to analyze and judge the input values of the resistance, and then achieve the control and alarm for going beyond the limit of gas concentration. The gas concentration monitoring system has man), advantages including simple in struc- ture, fast response time, stable performance and low cost. Thus, it can be widely used to monitor gas concentration and provide early wamings in small and medium-sized coal mines.展开更多
Objective To investigate the effects ofamiodarone (AMD) on simvastatin (SV) in human liver microsomes and the possible underlying mechanisms. Methods Time-, NADPH- and concentration-dependent inhibitions were test...Objective To investigate the effects ofamiodarone (AMD) on simvastatin (SV) in human liver microsomes and the possible underlying mechanisms. Methods Time-, NADPH- and concentration-dependent inhibitions were tested in HLM. The logarithm of relative inhibition values was plotted versus preincubation time (0, 5, 10, 15, 20min) for a series concentration of AMD used (0, 2, 5, 25, 50 umol/L), and the slopes determined by linear regression. These slope values represente the observed inactivation rate constants (kobs ). A double-reciprocal plot was then constructed using the reciprocal of the kobs (y-axis) and the reciprocal of the associated inhibitor concentration (x-axis) to estimate the values of kinact and K1, which were two principal kinetic constants that were specific for mechanism-based inhibition (MBI).drug-drug interactions (DDI) potential was predicted based on in vitro data and by using the in vitro-in vivo extrapolation. Results The time-, concentration- and NADPH-dependent characteristics confirmed that when SV was the substrate of CYP3A4, the inhibition of AMD to CYP3A4 is MBI. KI and kinact value were calculated to be 5.1umol/L and 0.018minL The CLant of SV was reduced 2.96-5.63 fold when it was administrated with AMD. Conclusion Based on the results, AMD would inhibit SV metabolism via the mechanism-based manner, which would lead to DDI when they are taken together. Careful clinical observation is recommended when AMD and SV have to be simultaneously prescribed.展开更多
The sediment resuspension mechanisms in Sungo Bay, a large-scale aquaculture area in north China, were investigated by analysing data collected during several periods from 2005 to 2006. Nortek 6M ADV current meter and...The sediment resuspension mechanisms in Sungo Bay, a large-scale aquaculture area in north China, were investigated by analysing data collected during several periods from 2005 to 2006. Nortek 6M ADV current meter and YSI6600 were used to collect the field data on current speed, current direction and water turbidities 1 m above the bottom. Based on the collected field data, it could be found that wind-waves and currents were the main driving force for sediment resuspension. The correlation between suspended sediment concentration (SSC) and turbidity (NTU) is SSC = 15.908 x In (NTU) + 7.0888 (n = 33, R2 = 0.7209). Taking the key factor (angle 0) into account, the combination effect between wave and current were expressed. Results showed that the combined shear stress (row) of wave stress (re) and current stress (rw) could be calculated by row = rc + 2√ rcrw sin θ + rw sin^2 θ. The critical shear stress for sediment resuspension was about 0.059 N/m^2. The correlation between suspended sediment concentration and critical shear stress could be expressed by rcw = 238.06 SSC + 25.215 (n = 25, R^2 = 0.7298).展开更多
Contribution of first flush runoff events from intense rainfall to downstream aquatic ecosystems are often reported in terms of sediment and nutrient delivery, with hardly any consideration to the contribution that st...Contribution of first flush runoff events from intense rainfall to downstream aquatic ecosystems are often reported in terms of sediment and nutrient delivery, with hardly any consideration to the contribution that standing, concentrated tailwater in primary aquatic systems makes to downstream nutrient loads. Two geographically distinct studies (Jonesboro Arkansas, and Stoneville Mississippi; 4 studies, n = 30) evaluated the effectiveness of drainage ditch systems to mitigate nutrient concentrations and loads. Within each independent study all experimental ditches had elevated background nutrient concentrations as a result of standing water, prior to the start of each simulated runoff experiment. These concentrations remained elevated 15-30 minutes post the start of each simulation as the concentrated, impounded water was pushed out through each system. In both these systems, it was hypothesized that water had accumulated in the respective drainage ditches and had been concentrated though evaporation and aquatic macrophyte transpiration. It is theorized that additional controlled drainage with improved dilution and hydraulic residence management.展开更多
It has been studied restoration processes in oil products-polluted soils at high northern latitudes (the Murmansk region, Russia). Mineral and organic fertilizers and a bacterial preparation (based on the local str...It has been studied restoration processes in oil products-polluted soils at high northern latitudes (the Murmansk region, Russia). Mineral and organic fertilizers and a bacterial preparation (based on the local strains of hydrocarbon-oxidizing bacteria) were applied for restore polluted soils. Periods of removing OP (oil products) from soil were determined by the reduction of the pollutant concentration and by soil biological activities--the dynamics of bacteria number and CO2 emission from soil. The soil OP even at such a high concentration (as 10 L/m^2) had stimulated bacterial reproduction. In three summer month levels in the control variant without ameliorators of OP content decreased by 59% from the initial level, in the variant with mineral and organic fertilizers by 86%, in the variant with the bacterial preparation by 84%. Stimulating of indigenous microorganisms activity with additional nutrients was no less effective technique of OP-polluted soil bioremediation, than applying the bacterial preparation, which requires considerable financial investment. Moderately contaminated of OP soil is a source of additional carbon dioxide emission in the atmosphere. Pollution soil with OP caused for increasing of share of potentially pathogenic fungi in the fungal community.展开更多
A non-equilibrium statistical method is used to study the collective characteristics of myosin II motors in a sarcomere during its contraction. By means of Fokker-Planck equation of molecular motors, we present a dyna...A non-equilibrium statistical method is used to study the collective characteristics of myosin II motors in a sarcomere during its contraction. By means of Fokker-Planck equation of molecular motors, we present a dynamic mechanical model for the sarcomere in skeletal muscle. This model has been solved with a numerical algorithm based on experimental chemical transition rates. The influences of ATP concentration and load on probability density, contraction velocity and maximum active force are discussed respectively. It is shown that contraction velocity and maximum isometric active force increase with the increasing ATP concentration and become constant when the ATP concentration reaches equilibrium saturation. Contraction velocity reduces gradually as the load force increases. We also find that active force begins to increase then decrease with the increasing length of sarcomere, and has a maximum value at the optimal length that all myosin motors can attach to actin filament. Our results are in good agreement with the Hill muscle model.展开更多
Cerenkov luminescence imaging(CLI) is a relatively new optical molecular imaging technique. The nature of Stokes shift in quantum dots(QD) can be used to improve the quality of CLI. However, the interaction mechanism ...Cerenkov luminescence imaging(CLI) is a relatively new optical molecular imaging technique. The nature of Stokes shift in quantum dots(QD) can be used to improve the quality of CLI. However, the interaction mechanism of QD with Cerenkov light remains unclear. In this work, the interaction mechanism between QD and radionuclides emitting β rays, γ rays, and Cerenkov light was investigated. The 96-well plates were used to test the different levels of radioactivity of radionuclides with different QD concentrations. Transparent vials were used to determine the relationship between QD fluorescence intensity and the distance from QD to the radionuclide. In addition, black paper was used to block the transmission of Cerenkov light through the QD vials. A linear relationship was found between the number of photons and the radioactivity of radionuclides when the QD concentration was kept constant. Similarly, the number of photons was linearly related to the QD concentration when the radioactivity of radionuclides was kept constant. Furthermore, with the increases in the distance between radionuclides and quantum dots, the number of photons was exponentially decreased. Meanwhile, the number of photons emitted from QD excited by Cerenkov light accounted for 20% the total number of photons excited by 131 I radionuclide. The result proved that QD was not only excited by Cerenkov light but also by other rays.展开更多
A Mechanism-Inferring method of networks exploited from machine learning theory caneffectively evaluate the predicting performance of a network model.The existing method for inferringnetwork mechanisms based on a cens...A Mechanism-Inferring method of networks exploited from machine learning theory caneffectively evaluate the predicting performance of a network model.The existing method for inferringnetwork mechanisms based on a census of subgraph numbers has some drawbacks,especially the needfor a runtime increasing strongly with network size and network density.In this paper,an improvedmethod has been proposed by introducing a census algorithm of subgraph concentrations.Networkmechanism can be quickly inferred by the new method even though the network has large scale andhigh density.Therefore,the application perspective of mechanism-inferring method has been extendedinto the wider fields of large-scale complex networks.By applying the new method to a case of proteininteraction network,the authors obtain the same inferring result as the existing method,which approvesthe effectiveness of the method.展开更多
This paper presents the results of an application of a first-order conditional moment closure (CMC) approach coupled with a semi-empirical soot model to investigate the effect of various detailed combustion chemistr...This paper presents the results of an application of a first-order conditional moment closure (CMC) approach coupled with a semi-empirical soot model to investigate the effect of various detailed combustion chemistry schemes on soot formation and destruction in turbulent non-premixed flames. A two-equation soot model repre- senting soot particle nucleation, growth, coagulation and oxidation, was incorporated into the CMC model. The turbulent flow-field of both flames is described using the Favre-averaged fluid-flow equations, applying a stan- dard k-c turbulence model. A number of five reaction kinetic mechanisms having 50 - 100 species and 200 - 1000 elementary reactions called ABF, Miller-Bowman, GRI-Mech3.0, Warnatz, and Qin were employed to study the effect of combustion chemistry schemes on soot predictions. The results showed that of various kinetic schemes being studied, each yields similar accuracy in temperature prediction when compared with experimental data. With respect to soot prediction, the kinetic scheme containing benzene elementary reactions tends to result in a better prediction on soot concentrations in comparison to those contain no benzene elementary reactions. Among five kinetic mechanisms being studied, the Qin combustion scheme mechanism turned to yield the best prediction on both flame temperature and soot levels.展开更多
基金Supported by Outstanding Young and Middle-aged Talent Program of Hubei Provincal Department of Education(Q20102501)~~
文摘[Objective] The aim was to explore effects of silicon at different concentrations on morphology and photosynthetic physiological mechanism of japonica rice. [Method] Seedlings of japonica rice were treated with silicon at different concentrations (0, 30, 80, 130 and 180 mg/L of sodium silicate); silicon contents were measured with Molybdenum blue spectrophotometric method in root, stem and leaf; plant height, root length and number in different treatment groups were measured with tools; chlorophyll a and b, and a/b in leaf and stem of rice in different groups were measured. [Result] Silicon contents in vegetative organs were as follows: stem〉leaf〉 root; when silicon was 80 mg/L, japonica ecotype was shortest; when silicon was 30 mg/L, root length of the rice was shortest and root number was least; when silicon was 30 mg/L, contents of chlorophyll a and b were highest and chlorophyll a/b achieved the peak when silicon was 80 mg/L. [Conclusion] Silicon at proper concen- tration would improve lodging-resistance and efficiency of photosynthesis, further enhancing yield of japonica rice.
基金supported by the program of Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Provincethe Hunan Province and Xiangtan City Natural Science Joint Foundation(No.09JJ8005)+1 种基金the Industrial Cultivation Program of Scientific and Technological Achievements in Higher Educational Institutions of Hunan Province(No.10CY008)the Technologies R & D of Hunan Province (No.2010CK3031)
文摘This paper is aimed at the actual conditions of disaster caused by gas in small and medium-sized coal mines. A new gas concentration monitoring system for coal mines is developed on the basis of gas-sensing detection and single-chip control. The monitoring system uses the tin oxide as the main material of N-type semiconductor gas sensors, be- cause it has good sensitive characteristics for the flammable and explosive gas ( such as methane, carbon monoxide). The QM-N5-semiconductor gas sensor is adopted to detect the output values of the resistance under the different gas con- centrations. The system, designedly, takes the AT89C51 digital chip as the core of the circuit processing hardware structure to analyze and judge the input values of the resistance, and then achieve the control and alarm for going beyond the limit of gas concentration. The gas concentration monitoring system has man), advantages including simple in struc- ture, fast response time, stable performance and low cost. Thus, it can be widely used to monitor gas concentration and provide early wamings in small and medium-sized coal mines.
文摘Objective To investigate the effects ofamiodarone (AMD) on simvastatin (SV) in human liver microsomes and the possible underlying mechanisms. Methods Time-, NADPH- and concentration-dependent inhibitions were tested in HLM. The logarithm of relative inhibition values was plotted versus preincubation time (0, 5, 10, 15, 20min) for a series concentration of AMD used (0, 2, 5, 25, 50 umol/L), and the slopes determined by linear regression. These slope values represente the observed inactivation rate constants (kobs ). A double-reciprocal plot was then constructed using the reciprocal of the kobs (y-axis) and the reciprocal of the associated inhibitor concentration (x-axis) to estimate the values of kinact and K1, which were two principal kinetic constants that were specific for mechanism-based inhibition (MBI).drug-drug interactions (DDI) potential was predicted based on in vitro data and by using the in vitro-in vivo extrapolation. Results The time-, concentration- and NADPH-dependent characteristics confirmed that when SV was the substrate of CYP3A4, the inhibition of AMD to CYP3A4 is MBI. KI and kinact value were calculated to be 5.1umol/L and 0.018minL The CLant of SV was reduced 2.96-5.63 fold when it was administrated with AMD. Conclusion Based on the results, AMD would inhibit SV metabolism via the mechanism-based manner, which would lead to DDI when they are taken together. Careful clinical observation is recommended when AMD and SV have to be simultaneously prescribed.
基金Acknowledgments This work was supported by the National Basic Research Program of China (Grant No. 2011 CB409805), the National Science and Technology Planning Project of China (Grant No. 2011BAD13B05), the National Natural Science Foundation of China (Grant No. 41006074) and theSpecial Project of State Oceanic Administration (Grant No. DOMEP (MEA)-02). The authors were grateful to Mr. Zhang Huayue of Xunshan Fishery Group for his cooperation along this work and also to the very constructive comments by several reviewers.
文摘The sediment resuspension mechanisms in Sungo Bay, a large-scale aquaculture area in north China, were investigated by analysing data collected during several periods from 2005 to 2006. Nortek 6M ADV current meter and YSI6600 were used to collect the field data on current speed, current direction and water turbidities 1 m above the bottom. Based on the collected field data, it could be found that wind-waves and currents were the main driving force for sediment resuspension. The correlation between suspended sediment concentration (SSC) and turbidity (NTU) is SSC = 15.908 x In (NTU) + 7.0888 (n = 33, R2 = 0.7209). Taking the key factor (angle 0) into account, the combination effect between wave and current were expressed. Results showed that the combined shear stress (row) of wave stress (re) and current stress (rw) could be calculated by row = rc + 2√ rcrw sin θ + rw sin^2 θ. The critical shear stress for sediment resuspension was about 0.059 N/m^2. The correlation between suspended sediment concentration and critical shear stress could be expressed by rcw = 238.06 SSC + 25.215 (n = 25, R^2 = 0.7298).
文摘Contribution of first flush runoff events from intense rainfall to downstream aquatic ecosystems are often reported in terms of sediment and nutrient delivery, with hardly any consideration to the contribution that standing, concentrated tailwater in primary aquatic systems makes to downstream nutrient loads. Two geographically distinct studies (Jonesboro Arkansas, and Stoneville Mississippi; 4 studies, n = 30) evaluated the effectiveness of drainage ditch systems to mitigate nutrient concentrations and loads. Within each independent study all experimental ditches had elevated background nutrient concentrations as a result of standing water, prior to the start of each simulated runoff experiment. These concentrations remained elevated 15-30 minutes post the start of each simulation as the concentrated, impounded water was pushed out through each system. In both these systems, it was hypothesized that water had accumulated in the respective drainage ditches and had been concentrated though evaporation and aquatic macrophyte transpiration. It is theorized that additional controlled drainage with improved dilution and hydraulic residence management.
文摘It has been studied restoration processes in oil products-polluted soils at high northern latitudes (the Murmansk region, Russia). Mineral and organic fertilizers and a bacterial preparation (based on the local strains of hydrocarbon-oxidizing bacteria) were applied for restore polluted soils. Periods of removing OP (oil products) from soil were determined by the reduction of the pollutant concentration and by soil biological activities--the dynamics of bacteria number and CO2 emission from soil. The soil OP even at such a high concentration (as 10 L/m^2) had stimulated bacterial reproduction. In three summer month levels in the control variant without ameliorators of OP content decreased by 59% from the initial level, in the variant with mineral and organic fertilizers by 86%, in the variant with the bacterial preparation by 84%. Stimulating of indigenous microorganisms activity with additional nutrients was no less effective technique of OP-polluted soil bioremediation, than applying the bacterial preparation, which requires considerable financial investment. Moderately contaminated of OP soil is a source of additional carbon dioxide emission in the atmosphere. Pollution soil with OP caused for increasing of share of potentially pathogenic fungi in the fungal community.
基金supported by the National Natural Science Foundation of China (Grant No. 61075101/60643002)the Research Fund of State Key Laboratory of MSV, China (Grant No. MSV-2010-1)+2 种基金the National High-Tech Research and Development Program of China (Grant No. 2006AA04Z240)the Shanghai Dawn Program (Grant No. 07SG14)the Medical and Technology Intercrossing Research Foundation of Shanghai Jiao Tong University (Grant No. YG2010ZD101)
文摘A non-equilibrium statistical method is used to study the collective characteristics of myosin II motors in a sarcomere during its contraction. By means of Fokker-Planck equation of molecular motors, we present a dynamic mechanical model for the sarcomere in skeletal muscle. This model has been solved with a numerical algorithm based on experimental chemical transition rates. The influences of ATP concentration and load on probability density, contraction velocity and maximum active force are discussed respectively. It is shown that contraction velocity and maximum isometric active force increase with the increasing ATP concentration and become constant when the ATP concentration reaches equilibrium saturation. Contraction velocity reduces gradually as the load force increases. We also find that active force begins to increase then decrease with the increasing length of sarcomere, and has a maximum value at the optimal length that all myosin motors can attach to actin filament. Our results are in good agreement with the Hill muscle model.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the National Natural Science Foundation of China(Grant No.11475087)the Fundamental Research Funds for the Central Universities(Grant No.3082014NS-2014060)
文摘Cerenkov luminescence imaging(CLI) is a relatively new optical molecular imaging technique. The nature of Stokes shift in quantum dots(QD) can be used to improve the quality of CLI. However, the interaction mechanism of QD with Cerenkov light remains unclear. In this work, the interaction mechanism between QD and radionuclides emitting β rays, γ rays, and Cerenkov light was investigated. The 96-well plates were used to test the different levels of radioactivity of radionuclides with different QD concentrations. Transparent vials were used to determine the relationship between QD fluorescence intensity and the distance from QD to the radionuclide. In addition, black paper was used to block the transmission of Cerenkov light through the QD vials. A linear relationship was found between the number of photons and the radioactivity of radionuclides when the QD concentration was kept constant. Similarly, the number of photons was linearly related to the QD concentration when the radioactivity of radionuclides was kept constant. Furthermore, with the increases in the distance between radionuclides and quantum dots, the number of photons was exponentially decreased. Meanwhile, the number of photons emitted from QD excited by Cerenkov light accounted for 20% the total number of photons excited by 131 I radionuclide. The result proved that QD was not only excited by Cerenkov light but also by other rays.
基金supported by the National Natural Science Foundation of China under Grant No. 70401019
文摘A Mechanism-Inferring method of networks exploited from machine learning theory caneffectively evaluate the predicting performance of a network model.The existing method for inferringnetwork mechanisms based on a census of subgraph numbers has some drawbacks,especially the needfor a runtime increasing strongly with network size and network density.In this paper,an improvedmethod has been proposed by introducing a census algorithm of subgraph concentrations.Networkmechanism can be quickly inferred by the new method even though the network has large scale andhigh density.Therefore,the application perspective of mechanism-inferring method has been extendedinto the wider fields of large-scale complex networks.By applying the new method to a case of proteininteraction network,the authors obtain the same inferring result as the existing method,which approvesthe effectiveness of the method.
基金Supported by Ministry of National Education,Republic of Indonesia No.433/SP2H/PP/DP2M/VI/2010
文摘This paper presents the results of an application of a first-order conditional moment closure (CMC) approach coupled with a semi-empirical soot model to investigate the effect of various detailed combustion chemistry schemes on soot formation and destruction in turbulent non-premixed flames. A two-equation soot model repre- senting soot particle nucleation, growth, coagulation and oxidation, was incorporated into the CMC model. The turbulent flow-field of both flames is described using the Favre-averaged fluid-flow equations, applying a stan- dard k-c turbulence model. A number of five reaction kinetic mechanisms having 50 - 100 species and 200 - 1000 elementary reactions called ABF, Miller-Bowman, GRI-Mech3.0, Warnatz, and Qin were employed to study the effect of combustion chemistry schemes on soot predictions. The results showed that of various kinetic schemes being studied, each yields similar accuracy in temperature prediction when compared with experimental data. With respect to soot prediction, the kinetic scheme containing benzene elementary reactions tends to result in a better prediction on soot concentrations in comparison to those contain no benzene elementary reactions. Among five kinetic mechanisms being studied, the Qin combustion scheme mechanism turned to yield the best prediction on both flame temperature and soot levels.