To study the relationship between sediment transportation and saltwater intrusion in the Changjiang (Yangtze) estuary, a three-dimensional numerical model for temperature, salinity, velocity field, and suspended sedim...To study the relationship between sediment transportation and saltwater intrusion in the Changjiang (Yangtze) estuary, a three-dimensional numerical model for temperature, salinity, velocity field, and suspended sediment concentration was established based on the ECOMSED model. Using this model, sediment transportation in the flood season of 2005 was simulated for the Changjiang estuary. A comparison between simulated results and observation data for the tidal level, flow velocity and direction, salinity and suspended sediment concentration indicated that they were consistent in overall. Based on model verification, the simulation of saltwater intrusion and its effect on sediment in the Changjiang estuary was analyzed in detail. The saltwater intrusion in the estuary including the formation, evolution, and disappearance of saltwater wedge and the induced vertical circulation were reproduced, and the crucial impact of the wedge on cohesive and non-cohesive suspended sediment distribution and transportation were successfully simulated. The result shows that near the salinity front, the simulated concentrations of both cohesive and non-cohesive suspended sediment at the surface layer had a strong relationship with the simulated velocity, especially when considering a 1-hour lag. However, in the bottom layer, there was no obvious correlation between them, because the saltwater wedge and its inducing vertical circulation may have resuspended loose sediment on the bed, thus forming a high-concentration area near the bottom even if the velocity near the bottom was very low during the transition phase from flood to ebb.展开更多
Seasonal variations in the nitrogen isotopic composition of dissolved nitrate (δ15NO3) were investigated in the surface waters of the Changjiang River estuary in 2009 and 2010. δ15NO3 varied between -4.6‰ and 8.9...Seasonal variations in the nitrogen isotopic composition of dissolved nitrate (δ15NO3) were investigated in the surface waters of the Changjiang River estuary in 2009 and 2010. δ15NO3 varied between -4.6‰ and 8.9%0 with changes in temperature, salinity, dissolved oxygen concentrations, and the composition of the dissolved inorganic nitrogen pool. In February, biological processes decreased because of low temperature, and the mean δ15NO3 near the river mouth was 2.4%0. In May, δ15NO3 was the highest in the surface waters among all seasons. Analysis on the conservative mixing revealed assimilation, and this finding is supported by positive relationship between Chl a and δ15NO3. The fractionation factor of assimilation was estimated to be 2.0‰ by the Rayleigh equation. Nitrification was supported based on the mixing behaviors in November 2010 and the low δ15NO3 values in May and November 2009. The high ammonium concentrations in the adjacent marine area and positive relationships between total organic nitrogen and δ15NO3 in November 2010 indicated that mineralization was taking place.展开更多
Radium (Ra) isotopes are useful for tracing water mass transport and examining estuarine hydrological dynamics. In this study, several hydrological parameters, nutrients, ehlorophyll-a (ehl-a), suspended particula...Radium (Ra) isotopes are useful for tracing water mass transport and examining estuarine hydrological dynamics. In this study, several hydrological parameters, nutrients, ehlorophyll-a (ehl-a), suspended particulate matter (SPM) and Ra isotopes (223Ra, 224Ra and 226Ra) of surface waters of the Zhujiang (Pearl) River estuary (ZRE) were measured. This was done for both winter (December) and summer (July) seasons, to quantitatively understand the seasonal characteristics of river plume flow rate and trajectories, as well as the ecological response. The results show that Ra concentrations in summer were higher than in winter, especially Z24Ra (about 2-5 times higher). The spatial distribution of three Ra isotopes and relative Ra water ages indicated that river water mainly flushed out of ZRE through the western side in winter, where the water transport was about 5 days faster than in the eastern zone. In summer, diluted river water expended to the east side, resulting in fairly similar water ages for both sides of the river mouth. Although nutrients were higher during the summer season, lower chl-a concentrations indicated that reduced primary production might be caused by high SPM (low light penetration). The results obtained from this study will provide knowledge needed for effectively developing and managing the ZRE.展开更多
Vegetable fields in peri-urban areas receive large amounts of extraneous heavy metals because of rapid urbanization and industrialization in China. The concentrations of Cu, Zn, and Pb in 30 soil samples and 32 vegeta...Vegetable fields in peri-urban areas receive large amounts of extraneous heavy metals because of rapid urbanization and industrialization in China. The concentrations of Cu, Zn, and Pb in 30 soil samples and 32 vegetable samples, collected from 30 different sites in southern Jiangsu Province of China, were measured and their transfer from soil to vegetable was determined. The results showed that the soil samples had wide ranges of pH (4.25-7.85) and electrical conductivity (EC) (0.24-3.42 dS m^-1). Among the soil samples, there were four soil samples containing higher Cu and two soil samples containing higher Zn concentrations than those specified in the Chinese Soil Environmental Quality Standard II. However, no vegetable sample was found to contain a high level of Cu or Zn. In contrast, one vegetable sample contained 0.243 mg Pb kg^-1 FW, which was above the Chinese Food Hygiene Standard, whereas the corresponding soil Pb concentration was lower than the Chinese Soil Environmental Quality Standard II. The transfer coefficients of Cu of all vegetable samples exceeded the suggested coefficient range, implying that extraneous Cu had high mobility and bioavallability to vegetables. There was no significant correlation between extractable soil heavy metal concentrations with four kinds of extractants and soil pH, EC, heavy metal concentrations in vegetables and soils, except that soil pH correlated well with the extractable soil Cu, Zn, and Pb concentrations with 1.0 mol L-1 NH4NO3. Moreover, diethylenetriamine pentaacetic acid (DTPA) extraction method was a more efficient method of extracting heavy metals from the soils independent of soil pH and EC than other three methods used.展开更多
A central composite experimental design and response surface method were used to investigate the combined effects of water temperature(18–34℃) and copper ion concentration(0.1–1.5 mg/L) on the catalase(CAT) activit...A central composite experimental design and response surface method were used to investigate the combined effects of water temperature(18–34℃) and copper ion concentration(0.1–1.5 mg/L) on the catalase(CAT) activity in the digestive gland of C rassostrea ariakensis. The results showed that the linear effects of temperature were significant(P <0.01), the quadratic effects of temperature were significant( P <0.05), the linear effects of copper ion concentration were not significant(P >0.05), and the quadratic effects of copper ion concentration were significant(P <0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant(P >0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.展开更多
Using the RMA4 water quality model to simulate the water quality of Neijiang river in Zhenjiang, the result showed that: in the dry season the ranges of the concentration of various pollutants simulation of Neijiang ...Using the RMA4 water quality model to simulate the water quality of Neijiang river in Zhenjiang, the result showed that: in the dry season the ranges of the concentration of various pollutants simulation of Neijiang were BOD5 3.2-5.2 mg/L, CODMn 4.7-6.8 mg/L, NH3-N 0.46-1.8 mg/L, TP 0.23-0.48 mg/L, and in the rainy period, the ranges of the concentration of various pollutants simulation of Neijiang were BOD5 0.69-0.73 mg/L, CODM, 1.9-2.3 mg/L, NH3-N 0.25-0.38 mg/L, TP 0.14-0.17 mg/L.These simulated values were closed to the monitoring values of pollution concentrations of Neijiang, which indicated that RMA4 was certain practical in the river water quality simulation, and simulation results have a certain degree of reliability, and it provides a scientific planning and management method for the river pollution control.展开更多
Wetland reclamation has been ongoing in the Sanjiang Plain since the mid-1950s,which has resulted in major changes in wetlands and the agriculture ecosystem in the region that have influenced the iron output to the Se...Wetland reclamation has been ongoing in the Sanjiang Plain since the mid-1950s,which has resulted in major changes in wetlands and the agriculture ecosystem in the region that have influenced the iron output to the Sea of Okhotsk and limited the primary productivity in the North Pacific Ocean.This study was conducted to investigate the chemical forms of iron in different aquatic environments(agricultural water including groundwater,paddy water,and canal water;wetland water including marsh water,marsh streams,and main streams) with the cross-flow filtration method to reveal the transportation and transformation characteristics of iron in response to major land use changes.In addition,the factors affecting iron behavior in different water bodies were reviewed.In marsh water and streams,the concentrations of dissolved iron were higher due to the high organic matter contents and marsh water becoming the main iron source for river water.The conversion of dissolved iron into acid-labile iron occurred during the discharge of wetland water into marsh rivers.Iron primarily existed in both the >0.7 and <0.01 μm size fractions,accounting for about 58.3% and 26.4% of the total dissolved iron,respectively.In agricultural irrigation systems,ferrous ion entered the paddy fields from groundwater,and a fraction of this ferrous iron was subsequently converted into high molecular weight and medium molecular weight iron(colloid iron) in paddy and canal water.However,the concentrations of total dissolved iron decreased by 62.5% from underground to the surface due to the formation of precipitates.Despite this,water discharge in agriculture is still an important iron source for rivers and has the potential to supplement iron due to its higher acid-labile iron concentrations.Land use and cover change and agricultural irrigation increased the iron content of surface soil,but reduced the output of iron in water systems.Overall,the concentration of total dissolved iron in water systems has been reduced to 42.6% by wetland reclamation.展开更多
Lorentz curve fittings are applied to frequency distributions of the concentrations of O3, CO, NOx and SO2 recorded at the Jinsha regional atmospheric background station (JSH) from June 2006 to July 2007, and the pe...Lorentz curve fittings are applied to frequency distributions of the concentrations of O3, CO, NOx and SO2 recorded at the Jinsha regional atmospheric background station (JSH) from June 2006 to July 2007, and the peak concentrations of these species for the different seasons are obtained. The peak concentrations are considered to be representative of different background levels for certain processes. The peak concentrations are compared with the corresponding mean (median) concentrations, and the suitability and limitations of the mean (median) values as the background levels are discussed. The mean (median) values might represent the background concentrations in the region under some circumstances, but in other cases these values often underestimate or overestimate the true background concentrations owing to the transport of pollutants and other factors. The effects of air masses transported from different regions on the pollutant background concentrations are obtained by analyzing the 72-hour backward trajectories of air masses 100m above the ground at JSH, These trajectories are estimated using the HYSPLIT model and then clustered for the measurement period. The spatial distribution and seasonal variations of trajectories and the corresponding mean concentrations of O3, SO〉 NOx and CO for different clusters are analyzed. After filtering the seasonal changes in pollutant concentrations, the relative influences of air masses from different regions are obtained. The results show that JSH can be used to obtain the atmospheric background information of different air masses originating from or passing over the Yangtze River Delta, Central South China and the Jianghan Plain. Air masses from Central China, South China, and the western Yangtze River Delta contribute significantly to O3 at JSH. Air masses from the north and northeast of JSH (i.e., the Jianghan Plain, Huang-Huai Plain and North China Plain) and the south (Central South China) contribute significantly to SO2, CO and NOx concentrations. Air masses originating from the ocean often bring clean air. Air masses originating from high altitudes over northwestern regions often have lower CO and NO3 concentrations, lower relative humidity, and higher concentrations of O3 and SO2.展开更多
The effect of total dissolved gas (TDG) supersaturation on fish living downstream of dams is one of the main ecological risks of high dam construction. A strategy for mitigating the negative effects is needed urgent...The effect of total dissolved gas (TDG) supersaturation on fish living downstream of dams is one of the main ecological risks of high dam construction. A strategy for mitigating the negative effects is needed urgently since many high dams are under construction in the upper reaches of the Yangtze River in China. Experiments on the hatching process of David's schizothoracin were carried out and the results show that the hatching rate decreased with increasing TDG levels, and that most eggs hatched within a very short time in the higher TDG saturation groups. By using a stereomicroscope, damages to the head, yolk sac, body, anus, etc. were found in larvae which hatched in TDG supersaturated water. Results show that the lesion rate increased with increasing TDG levels. Furthermore, 7-d-old David's schizothoracin were exposed to TDG supersaturated water levels of 100%, 105%, 110%, 115%, 120%, 125%, 130%, 135%, and 140% for testing their tolerance to TDG supersaturation. We found that the median lethal concentrations (LC50) for 13, 14, 20, 35, 52, 73, and 96 h exposure were 138%, 138%, 134%, 130%, 129%, 128%, and 126%, respectively. The median lethal times (LTs0) were 7.49, 11.04, 19.25, and 35.38 h for exposure to water with TDG levels of 145%, 140%, 135%, and 130%, respectively.展开更多
基金Supported by the National Natural Science Foundation of China (No. 40406025)the National High Technology Research and Development Program of China (863 Program) (No. 2006AA09Z157)
文摘To study the relationship between sediment transportation and saltwater intrusion in the Changjiang (Yangtze) estuary, a three-dimensional numerical model for temperature, salinity, velocity field, and suspended sediment concentration was established based on the ECOMSED model. Using this model, sediment transportation in the flood season of 2005 was simulated for the Changjiang estuary. A comparison between simulated results and observation data for the tidal level, flow velocity and direction, salinity and suspended sediment concentration indicated that they were consistent in overall. Based on model verification, the simulation of saltwater intrusion and its effect on sediment in the Changjiang estuary was analyzed in detail. The saltwater intrusion in the estuary including the formation, evolution, and disappearance of saltwater wedge and the induced vertical circulation were reproduced, and the crucial impact of the wedge on cohesive and non-cohesive suspended sediment distribution and transportation were successfully simulated. The result shows that near the salinity front, the simulated concentrations of both cohesive and non-cohesive suspended sediment at the surface layer had a strong relationship with the simulated velocity, especially when considering a 1-hour lag. However, in the bottom layer, there was no obvious correlation between them, because the saltwater wedge and its inducing vertical circulation may have resuspended loose sediment on the bed, thus forming a high-concentration area near the bottom even if the velocity near the bottom was very low during the transition phase from flood to ebb.
基金Supported by the National Natural Science Foundation of China(No.41276116)the Fund for Creative Research Groups by NSFC(No.41121064)the National Basic Research Program of China(973 Program)(No.2010CB428706)
文摘Seasonal variations in the nitrogen isotopic composition of dissolved nitrate (δ15NO3) were investigated in the surface waters of the Changjiang River estuary in 2009 and 2010. δ15NO3 varied between -4.6‰ and 8.9%0 with changes in temperature, salinity, dissolved oxygen concentrations, and the composition of the dissolved inorganic nitrogen pool. In February, biological processes decreased because of low temperature, and the mean δ15NO3 near the river mouth was 2.4%0. In May, δ15NO3 was the highest in the surface waters among all seasons. Analysis on the conservative mixing revealed assimilation, and this finding is supported by positive relationship between Chl a and δ15NO3. The fractionation factor of assimilation was estimated to be 2.0‰ by the Rayleigh equation. Nitrification was supported based on the mixing behaviors in November 2010 and the low δ15NO3 values in May and November 2009. The high ammonium concentrations in the adjacent marine area and positive relationships between total organic nitrogen and δ15NO3 in November 2010 indicated that mineralization was taking place.
基金Supported by the National Natural Science Foundation of China(Nos.41576075,41106072,41376085)the Natural Science Foundation of Shangdong Province(No.ZR2012DQ002)the Ministry of Land and Resources Program(Nos.GZH201200505,201411072)
文摘Radium (Ra) isotopes are useful for tracing water mass transport and examining estuarine hydrological dynamics. In this study, several hydrological parameters, nutrients, ehlorophyll-a (ehl-a), suspended particulate matter (SPM) and Ra isotopes (223Ra, 224Ra and 226Ra) of surface waters of the Zhujiang (Pearl) River estuary (ZRE) were measured. This was done for both winter (December) and summer (July) seasons, to quantitatively understand the seasonal characteristics of river plume flow rate and trajectories, as well as the ecological response. The results show that Ra concentrations in summer were higher than in winter, especially Z24Ra (about 2-5 times higher). The spatial distribution of three Ra isotopes and relative Ra water ages indicated that river water mainly flushed out of ZRE through the western side in winter, where the water transport was about 5 days faster than in the eastern zone. In summer, diluted river water expended to the east side, resulting in fairly similar water ages for both sides of the river mouth. Although nutrients were higher during the summer season, lower chl-a concentrations indicated that reduced primary production might be caused by high SPM (low light penetration). The results obtained from this study will provide knowledge needed for effectively developing and managing the ZRE.
基金Project supported by the Knowledge Innovative Program of the Chinese Academy of Sciences (No.KZCX3-SW-435)the National Natural Science Foundation of China (Nos.40671095 and 30700480).
文摘Vegetable fields in peri-urban areas receive large amounts of extraneous heavy metals because of rapid urbanization and industrialization in China. The concentrations of Cu, Zn, and Pb in 30 soil samples and 32 vegetable samples, collected from 30 different sites in southern Jiangsu Province of China, were measured and their transfer from soil to vegetable was determined. The results showed that the soil samples had wide ranges of pH (4.25-7.85) and electrical conductivity (EC) (0.24-3.42 dS m^-1). Among the soil samples, there were four soil samples containing higher Cu and two soil samples containing higher Zn concentrations than those specified in the Chinese Soil Environmental Quality Standard II. However, no vegetable sample was found to contain a high level of Cu or Zn. In contrast, one vegetable sample contained 0.243 mg Pb kg^-1 FW, which was above the Chinese Food Hygiene Standard, whereas the corresponding soil Pb concentration was lower than the Chinese Soil Environmental Quality Standard II. The transfer coefficients of Cu of all vegetable samples exceeded the suggested coefficient range, implying that extraneous Cu had high mobility and bioavallability to vegetables. There was no significant correlation between extractable soil heavy metal concentrations with four kinds of extractants and soil pH, EC, heavy metal concentrations in vegetables and soils, except that soil pH correlated well with the extractable soil Cu, Zn, and Pb concentrations with 1.0 mol L-1 NH4NO3. Moreover, diethylenetriamine pentaacetic acid (DTPA) extraction method was a more efficient method of extracting heavy metals from the soils independent of soil pH and EC than other three methods used.
基金Supported by the Guangdong Province Science & Technology Project(No.2010B020201014)the Guangdong Province Education Department(No.GCZX-A0909)+2 种基金the Guangdong Province Ocean and Fisheries Science & Technology Extension Project(No.20120980)the Guangdong Province Industry-University-Science Partnership Project(No.20110908)the Sci & Tech Plan of Huaiyin Normal University(No.00wh0031)
文摘A central composite experimental design and response surface method were used to investigate the combined effects of water temperature(18–34℃) and copper ion concentration(0.1–1.5 mg/L) on the catalase(CAT) activity in the digestive gland of C rassostrea ariakensis. The results showed that the linear effects of temperature were significant(P <0.01), the quadratic effects of temperature were significant( P <0.05), the linear effects of copper ion concentration were not significant(P >0.05), and the quadratic effects of copper ion concentration were significant(P <0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant(P >0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.
文摘Using the RMA4 water quality model to simulate the water quality of Neijiang river in Zhenjiang, the result showed that: in the dry season the ranges of the concentration of various pollutants simulation of Neijiang were BOD5 3.2-5.2 mg/L, CODMn 4.7-6.8 mg/L, NH3-N 0.46-1.8 mg/L, TP 0.23-0.48 mg/L, and in the rainy period, the ranges of the concentration of various pollutants simulation of Neijiang were BOD5 0.69-0.73 mg/L, CODM, 1.9-2.3 mg/L, NH3-N 0.25-0.38 mg/L, TP 0.14-0.17 mg/L.These simulated values were closed to the monitoring values of pollution concentrations of Neijiang, which indicated that RMA4 was certain practical in the river water quality simulation, and simulation results have a certain degree of reliability, and it provides a scientific planning and management method for the river pollution control.
基金supported by National Basic Research Program of China (Grant No. 2004CB418502)
文摘Wetland reclamation has been ongoing in the Sanjiang Plain since the mid-1950s,which has resulted in major changes in wetlands and the agriculture ecosystem in the region that have influenced the iron output to the Sea of Okhotsk and limited the primary productivity in the North Pacific Ocean.This study was conducted to investigate the chemical forms of iron in different aquatic environments(agricultural water including groundwater,paddy water,and canal water;wetland water including marsh water,marsh streams,and main streams) with the cross-flow filtration method to reveal the transportation and transformation characteristics of iron in response to major land use changes.In addition,the factors affecting iron behavior in different water bodies were reviewed.In marsh water and streams,the concentrations of dissolved iron were higher due to the high organic matter contents and marsh water becoming the main iron source for river water.The conversion of dissolved iron into acid-labile iron occurred during the discharge of wetland water into marsh rivers.Iron primarily existed in both the >0.7 and <0.01 μm size fractions,accounting for about 58.3% and 26.4% of the total dissolved iron,respectively.In agricultural irrigation systems,ferrous ion entered the paddy fields from groundwater,and a fraction of this ferrous iron was subsequently converted into high molecular weight and medium molecular weight iron(colloid iron) in paddy and canal water.However,the concentrations of total dissolved iron decreased by 62.5% from underground to the surface due to the formation of precipitates.Despite this,water discharge in agriculture is still an important iron source for rivers and has the potential to supplement iron due to its higher acid-labile iron concentrations.Land use and cover change and agricultural irrigation increased the iron content of surface soil,but reduced the output of iron in water systems.Overall,the concentration of total dissolved iron in water systems has been reduced to 42.6% by wetland reclamation.
基金supported by National Basic Research Program of China (Grant No. 2005CB4222002)Project of China Meteorological Administration (Grant No. GYHY[QX]200706005)National Natural Science Foundation of China (Grant No. 40705042)
文摘Lorentz curve fittings are applied to frequency distributions of the concentrations of O3, CO, NOx and SO2 recorded at the Jinsha regional atmospheric background station (JSH) from June 2006 to July 2007, and the peak concentrations of these species for the different seasons are obtained. The peak concentrations are considered to be representative of different background levels for certain processes. The peak concentrations are compared with the corresponding mean (median) concentrations, and the suitability and limitations of the mean (median) values as the background levels are discussed. The mean (median) values might represent the background concentrations in the region under some circumstances, but in other cases these values often underestimate or overestimate the true background concentrations owing to the transport of pollutants and other factors. The effects of air masses transported from different regions on the pollutant background concentrations are obtained by analyzing the 72-hour backward trajectories of air masses 100m above the ground at JSH, These trajectories are estimated using the HYSPLIT model and then clustered for the measurement period. The spatial distribution and seasonal variations of trajectories and the corresponding mean concentrations of O3, SO〉 NOx and CO for different clusters are analyzed. After filtering the seasonal changes in pollutant concentrations, the relative influences of air masses from different regions are obtained. The results show that JSH can be used to obtain the atmospheric background information of different air masses originating from or passing over the Yangtze River Delta, Central South China and the Jianghan Plain. Air masses from Central China, South China, and the western Yangtze River Delta contribute significantly to O3 at JSH. Air masses from the north and northeast of JSH (i.e., the Jianghan Plain, Huang-Huai Plain and North China Plain) and the south (Central South China) contribute significantly to SO2, CO and NOx concentrations. Air masses originating from the ocean often bring clean air. Air masses originating from high altitudes over northwestern regions often have lower CO and NO3 concentrations, lower relative humidity, and higher concentrations of O3 and SO2.
基金Project (No. 50979063) supported by the National Natural Science Foundation of China
文摘The effect of total dissolved gas (TDG) supersaturation on fish living downstream of dams is one of the main ecological risks of high dam construction. A strategy for mitigating the negative effects is needed urgently since many high dams are under construction in the upper reaches of the Yangtze River in China. Experiments on the hatching process of David's schizothoracin were carried out and the results show that the hatching rate decreased with increasing TDG levels, and that most eggs hatched within a very short time in the higher TDG saturation groups. By using a stereomicroscope, damages to the head, yolk sac, body, anus, etc. were found in larvae which hatched in TDG supersaturated water. Results show that the lesion rate increased with increasing TDG levels. Furthermore, 7-d-old David's schizothoracin were exposed to TDG supersaturated water levels of 100%, 105%, 110%, 115%, 120%, 125%, 130%, 135%, and 140% for testing their tolerance to TDG supersaturation. We found that the median lethal concentrations (LC50) for 13, 14, 20, 35, 52, 73, and 96 h exposure were 138%, 138%, 134%, 130%, 129%, 128%, and 126%, respectively. The median lethal times (LTs0) were 7.49, 11.04, 19.25, and 35.38 h for exposure to water with TDG levels of 145%, 140%, 135%, and 130%, respectively.