China is experiencing rapid urbanization that has changed the water quality of rivers, especially nutrient loads. In this study, a typical urban river located in a karst area, Chengguan River, was chosen to explore th...China is experiencing rapid urbanization that has changed the water quality of rivers, especially nutrient loads. In this study, a typical urban river located in a karst area, Chengguan River, was chosen to explore the influence of urbanization on river ecosystems based on nutrient concentration and nitrate isotopes. The results show monthly variability of water chemistry and nutrient concentration. Nutrient concentration in two tributaries and the mainstem showed significant spatial variability, with heavy N and P pollution in one tributary near a suburban area,indicating a response to different levels of urbanization.Measurements of nitrate dual isotopes suggest thatvolatilization, assimilation, nitrification, and denitrification all occur in the polluted river. Water chemistry and nitrate isotopes show that major nitrogen sources included domestic waste and agricultural input, such as chemical fertilizer and manure. The results suggest that urbanization increases nutrient concentrations and accelerates the riverine nitrogen dynamic, and point to the need to manage point sources of sewage effluents to improve the water quality of urban rivers in southwestern China.展开更多
Dissolved nutrient concentration in the Huanghe (Yellow) River at Lijin was monitored during a water-sediment regulation period and a subsequent rainstorm from 14 June to 19 July, 2005. This study provides detailed ...Dissolved nutrient concentration in the Huanghe (Yellow) River at Lijin was monitored during a water-sediment regulation period and a subsequent rainstorm from 14 June to 19 July, 2005. This study provides detailed information on nutrient concentrations in the Huanghe River during the water-sediment regulation and rainstorm periods, and is of significance for the downstream area of the Huanghe River and the Bohai Sea. The average concentrations of nitrate, nitrite and ammonia were 304.7 μmol/L, 0.19 μmol/L, and 1.10 μmol/L, respectively, while the average concentrations of dissolved inorganic phosphorus (DIP) and dissolved silicate (DSi) were 0.23 gmol/L and 122.9 ktmol/L, respectively. Nutrient concentrations during the water-sediment regulation period were mainly influenced by the dilution effect, floodplain effect and sediment resuspension while dilution and erosion effects were the main factors during the rainstorm. The fluxes of dissolved inorganic nitrogen (DIN), DIP and DSi during the water-sediment regulation and rainstorm periods accounted for 20.4%, 19.5%, 16.7% and 4.97%, 6.45%, 5.47% of the annual nutrient fluxes, respectively. Discharge was the main factor influencing the fluxes of nutrients during both the water- sediment regulation and the rainstorm periods.展开更多
The effects of nitrate concentration in the main anoxic zone on denitrifying dephosphatation capability were conducted based on modified University of Cape Town (MUCT) process. Meanwhile the relation between optimal...The effects of nitrate concentration in the main anoxic zone on denitrifying dephosphatation capability were conducted based on modified University of Cape Town (MUCT) process. Meanwhile the relation between optimal nitrate concentration (Nopt) and influent C/N ratio was evaluated, in which the influont chemical oxygen demand (COD) concentration was stabilized at (2905:10)mg/L, the influent total phosphorus (TP) concentration was stabilized at (7.0±0. 5)mg/L. The results indicated that: (1) the nitrate concentration in the main anoxic zone had an effect on denitrifying dephosphatation capability, and the average percentages of anoxic phosphorus uptake in total phosphorus uptake (ηa) increased with nitrate cancentration increasing, i.e., increasing from 62.1% at2.0 mg/L to63.7%, 65.6%, 68.1%, and 72.3% at 2.2, 2.4, 2.6 and 2.8mg/L, respectively; (2) the Nopt as function of influent C/N ratio could be calculated by the equation: y = 0.67x^2-7.79x + 22. 21; the maximum percentages of anoxic phosphorus uptake in total phosphorus uptake (ηa,max) as function of the Nopt could be calculated by the equation: y=0.77-0.33e^-(x/1.52). The Nopt was the important control parameter that must be optimized for operation of conveational biological nutrieat removal activated sludge (BNRAS) system.展开更多
The catalytically grown carbon nanofibers were treated by a mixture of concentrated nitric aid and sulfuric aid in an autoclave at temperature 333, 363 and 423 K. It was found that the samples treated at 363 K and 423...The catalytically grown carbon nanofibers were treated by a mixture of concentrated nitric aid and sulfuric aid in an autoclave at temperature 333, 363 and 423 K. It was found that the samples treated at 363 K and 423 K were still well dispersed in water 15 hours later, indicating that carbon nanofibers can be made hydrophilicy. It was also found that the dispersion was destroyed when the pH value was lowered by adding acid. The results are significant when the carbon nanofibers are used as enhancing component in polymer composite material because several hundreds of nm are perfect size and the hydrophilicity controls the dispersion of CNFs in the polymer media. It is concluded that the amount of the oxygen-containing groups on the surface and the hydrophilicity of the carbon nanofibers can be controlled by the treatment temperature, and that the carbon nanofibers can be cleaved into uniform segments.展开更多
Natural nitrogen isotope composition(δ^(15)N) is an indicator of nitrogen sources and is useful in the investigation of nitrogen cycling in organisms and ecosystems. δ^(15)N is also used to study assimilation of ino...Natural nitrogen isotope composition(δ^(15)N) is an indicator of nitrogen sources and is useful in the investigation of nitrogen cycling in organisms and ecosystems. δ^(15)N is also used to study assimilation of inorganic nitrogen. However, the foliar δ^(15)N of intact plants, which is a consequence of nitrate assimilation occurring in the roots and shoots, is not suited for studying nitrate assimilation in cases where nitrate is the sole nitrogen source. In this study, Orychophragmus violaceus(Ov) and Brassica napus(Bn) plantlets, in which nitrate assimilation occurred in the leaves, were used to study the relationship between foliar δ^(15)N and nitrate assimilation.The plantlets were grown in vitro in culture media with different nitrate concentrations, and no root formation occurred for the plantlets during the multiplication stage.Nitrogen isotope fractionation occurred in both the Ov and the Bn plantlets under all treatments. Furthermore, the foliar nitrogen content of both the Ov and Bn plantlets increased with increasing nitrate concentration. Foliar nitrogen isotope fractionation was negatively correlated with foliar nitrogen content for both the Ov and Bn plantlets. Our results suggest that the foliar nitrogen isotope fractionation value could be employed to evaluate nitrate assimilation ability and leaf nitrate reductase activity.Moreover, high external nitrate concentrations couldcontribute to improved foliar nitrogen content and enhanced nitrate assimilation ability.展开更多
An ion chromatographic method with a valve switching facility was developed to determine trace nitrate concentrations in seawater using two pumps, two different suppressors, and two columns. A carbohydrate membrane de...An ion chromatographic method with a valve switching facility was developed to determine trace nitrate concentrations in seawater using two pumps, two different suppressors, and two columns. A carbohydrate membrane desalter was used to reduce the high concentrations of sodium salts in samples. In this method, trace nitrate was eluted from the concentrator column to the analytical columns, while the matrix fl owed to waste. Neither chemical pre-treatment nor sample dilution was required. In the optimized separation conditions, the method showed good linearity( R >0.99) in the 0.05 and 50 mg/L concentration range, and satisfactory repeatability(RSD<5%, n =6). The limit of detection for nitrate was 0.02 mg/L. Results showed that the valve switching system was suitable and practical for the determination of trace nitrate in seawater.展开更多
The authors quantify the impacts of sulfate and nitrate aerosol formation on surface-layer 03 concentrations over China using the one-way nested-grid capa- bility of the global three-dimensional Goddard Earth Ob- serv...The authors quantify the impacts of sulfate and nitrate aerosol formation on surface-layer 03 concentrations over China using the one-way nested-grid capa- bility of the global three-dimensional Goddard Earth Ob- serving System chemical transport model (GEOS-Chem). Chemical reactions associated with sulfate formation are simulated to generally increase 03 concentrations in China. Over the North China Plain (NCP) and the Si- chuan Basin (SCB), where simulated sulfate concentra- tions are the largest, ozone concentrations show maximum increases in spring by 1.8 ppbv (3.2%) in the NCP and by 2.6 ppbv (3.7%) in the SCB. On the contrary, nitrate formation is simulated to reduce 03 concentrations by up to 1.0 ppbv in eastern China, with the largest reduc- tions of 1.0 ppbv (1.4%) in summer over the NCE Ac- counting for the formation of both sulfate and nitrate, the surface-layer O3 concentrations over a large fraction of eastern China are simulated to increase in winter, spring, and autumn, dominated by the impact of sulfate forma- tion, but to decrease in summer because of the dominant contribution from nitrate formation.展开更多
A strain capable of phenol degradation, hetemtrophic nitrification and aerobic denitrification was isolated from activated sludge of coking-plant wastewater ponds under aerobic condition. Based on its morphology, phys...A strain capable of phenol degradation, hetemtrophic nitrification and aerobic denitrification was isolated from activated sludge of coking-plant wastewater ponds under aerobic condition. Based on its morphology, physiology, biochemical analysis and phylogenetic characteristics, the isolate was identified as Diaphorobacter sp. PD-7. Biodegradation tests of phenol showed that the maximum phenol degradation occurred at the late phase of exponential growth stages, with 1400 mg·L^-1 phenol completely degraded within 85 h. Diaphorobacter sp. PD-7 accumulated a vast quantity of phenol hydroxylase in this physiological phase, ensuring that the cells quickly utilize phenol as a sole carbon and energy source. The kinetic behavior ofDiaphorobacter sp. PD-7 in batch cultures was investigated over a wide range of initial phenol concentrations (0-1400mg·L^-1) by using the Haldane model, which adequately describes the dynamic behavior of phenol biodegradation by strain Diaphombacter sp. PD-7. At initial phenol concentration of 1400mg· L^-l, batch experiments (0.25 L flask) of nitrogen removal under aerobic condition gave almost entirely removal of 120.69mg· L^- 1 ammonium nitrogen within 75 h, while nitrate nitrogen removal reached 91% within 65 h. Moreover, hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase were successfully expressed in the isolate.展开更多
An understanding of the long-term changes in the nitrate and microbial contamination pattern of the groundwater of Sidi Bouzid (Centre West of Tunisia) is critical to conservation of drinking water in rural areas su...An understanding of the long-term changes in the nitrate and microbial contamination pattern of the groundwater of Sidi Bouzid (Centre West of Tunisia) is critical to conservation of drinking water in rural areas supporting mixed land-use activities such as cropping, livestock farming, and residence. The phreatic aquifer was revealed polluted by domestic disposals of the wastewaters in the urban zone. The average nitrate concentration in the groundwater of the east of the mioplioquaternary aquifer of Saddaguia (Sidi Bouzid) rose from 50 mg NO3- during 1996 to over 100 mg in 2003, which represents an increase of some 10 mg per year. Nitrate groundwater pollution during the period 1996-2003 was the result of the abusive use of fertilizers.In the cultivated zone, we must reduce the effects of the excessive use of the nitrogen fertilizers on the basis of monitoring soil once a year, managing water resources, rationalizing the use of the chemical substances. In urban zones, most of lost wells located in the perimeter reveal the gravity of the state of the aquifer. This last is organically polluted and requires an immediate action for the generalization of the purification network. We need to take into account the reality of under soil in all future planning's and arrangements. A scheme of sanitation seems necessary before all plans of arrangement. The extension of the sewer network must give the priority to the most vulnerable zones.展开更多
基金financially supported by National Natural Science Foundation of China(Grant Nos.41571130072 and41130536)the Ministry of Science and Technology of China through Grant Nos.2016YFA0601000 and 2013CB956700
文摘China is experiencing rapid urbanization that has changed the water quality of rivers, especially nutrient loads. In this study, a typical urban river located in a karst area, Chengguan River, was chosen to explore the influence of urbanization on river ecosystems based on nutrient concentration and nitrate isotopes. The results show monthly variability of water chemistry and nutrient concentration. Nutrient concentration in two tributaries and the mainstem showed significant spatial variability, with heavy N and P pollution in one tributary near a suburban area,indicating a response to different levels of urbanization.Measurements of nitrate dual isotopes suggest thatvolatilization, assimilation, nitrification, and denitrification all occur in the polluted river. Water chemistry and nitrate isotopes show that major nitrogen sources included domestic waste and agricultural input, such as chemical fertilizer and manure. The results suggest that urbanization increases nutrient concentrations and accelerates the riverine nitrogen dynamic, and point to the need to manage point sources of sewage effluents to improve the water quality of urban rivers in southwestern China.
基金Supported by the National Natural Science Foundation of China(No.40976044)the National Basic Research Program of China(973 Program)(No.2011CB403602)the Funds for Creative Research Groups ofChina(No.41221004)
文摘Dissolved nutrient concentration in the Huanghe (Yellow) River at Lijin was monitored during a water-sediment regulation period and a subsequent rainstorm from 14 June to 19 July, 2005. This study provides detailed information on nutrient concentrations in the Huanghe River during the water-sediment regulation and rainstorm periods, and is of significance for the downstream area of the Huanghe River and the Bohai Sea. The average concentrations of nitrate, nitrite and ammonia were 304.7 μmol/L, 0.19 μmol/L, and 1.10 μmol/L, respectively, while the average concentrations of dissolved inorganic phosphorus (DIP) and dissolved silicate (DSi) were 0.23 gmol/L and 122.9 ktmol/L, respectively. Nutrient concentrations during the water-sediment regulation period were mainly influenced by the dilution effect, floodplain effect and sediment resuspension while dilution and erosion effects were the main factors during the rainstorm. The fluxes of dissolved inorganic nitrogen (DIN), DIP and DSi during the water-sediment regulation and rainstorm periods accounted for 20.4%, 19.5%, 16.7% and 4.97%, 6.45%, 5.47% of the annual nutrient fluxes, respectively. Discharge was the main factor influencing the fluxes of nutrients during both the water- sediment regulation and the rainstorm periods.
基金Water Pollution Control and Management of Science and Technology Majon Projects (No.2008ZX07207005)The Programs for Development of Science and Technology of Jilin Province of China (No.20071105)
文摘The effects of nitrate concentration in the main anoxic zone on denitrifying dephosphatation capability were conducted based on modified University of Cape Town (MUCT) process. Meanwhile the relation between optimal nitrate concentration (Nopt) and influent C/N ratio was evaluated, in which the influont chemical oxygen demand (COD) concentration was stabilized at (2905:10)mg/L, the influent total phosphorus (TP) concentration was stabilized at (7.0±0. 5)mg/L. The results indicated that: (1) the nitrate concentration in the main anoxic zone had an effect on denitrifying dephosphatation capability, and the average percentages of anoxic phosphorus uptake in total phosphorus uptake (ηa) increased with nitrate cancentration increasing, i.e., increasing from 62.1% at2.0 mg/L to63.7%, 65.6%, 68.1%, and 72.3% at 2.2, 2.4, 2.6 and 2.8mg/L, respectively; (2) the Nopt as function of influent C/N ratio could be calculated by the equation: y = 0.67x^2-7.79x + 22. 21; the maximum percentages of anoxic phosphorus uptake in total phosphorus uptake (ηa,max) as function of the Nopt could be calculated by the equation: y=0.77-0.33e^-(x/1.52). The Nopt was the important control parameter that must be optimized for operation of conveational biological nutrieat removal activated sludge (BNRAS) system.
基金Supported by the Natural Science Foundation of Ningbo (2010A610093)
文摘The catalytically grown carbon nanofibers were treated by a mixture of concentrated nitric aid and sulfuric aid in an autoclave at temperature 333, 363 and 423 K. It was found that the samples treated at 363 K and 423 K were still well dispersed in water 15 hours later, indicating that carbon nanofibers can be made hydrophilicy. It was also found that the dispersion was destroyed when the pH value was lowered by adding acid. The results are significant when the carbon nanofibers are used as enhancing component in polymer composite material because several hundreds of nm are perfect size and the hydrophilicity controls the dispersion of CNFs in the polymer media. It is concluded that the amount of the oxygen-containing groups on the surface and the hydrophilicity of the carbon nanofibers can be controlled by the treatment temperature, and that the carbon nanofibers can be cleaved into uniform segments.
基金supported by the National Key Research and development Program of China (2016YFC0502602)the National Natural Science Foundation of China (U1612441)the project of high-level innovative talents of Guizhou Province [2015(4035)]
文摘Natural nitrogen isotope composition(δ^(15)N) is an indicator of nitrogen sources and is useful in the investigation of nitrogen cycling in organisms and ecosystems. δ^(15)N is also used to study assimilation of inorganic nitrogen. However, the foliar δ^(15)N of intact plants, which is a consequence of nitrate assimilation occurring in the roots and shoots, is not suited for studying nitrate assimilation in cases where nitrate is the sole nitrogen source. In this study, Orychophragmus violaceus(Ov) and Brassica napus(Bn) plantlets, in which nitrate assimilation occurred in the leaves, were used to study the relationship between foliar δ^(15)N and nitrate assimilation.The plantlets were grown in vitro in culture media with different nitrate concentrations, and no root formation occurred for the plantlets during the multiplication stage.Nitrogen isotope fractionation occurred in both the Ov and the Bn plantlets under all treatments. Furthermore, the foliar nitrogen content of both the Ov and Bn plantlets increased with increasing nitrate concentration. Foliar nitrogen isotope fractionation was negatively correlated with foliar nitrogen content for both the Ov and Bn plantlets. Our results suggest that the foliar nitrogen isotope fractionation value could be employed to evaluate nitrate assimilation ability and leaf nitrate reductase activity.Moreover, high external nitrate concentrations couldcontribute to improved foliar nitrogen content and enhanced nitrate assimilation ability.
基金Supported by the National Special Fund for Major Research Instrumentation Development(No.2012YQ090229)the Instrument Functional Exploitation and Technical Innovation Fund,Chinese Academy of Sciences(No.yg2010072)the Shandong Provincial Technology Development Plan Fund(Nos.2011SJGZ06,2012SJGZ12,2012424012)
文摘An ion chromatographic method with a valve switching facility was developed to determine trace nitrate concentrations in seawater using two pumps, two different suppressors, and two columns. A carbohydrate membrane desalter was used to reduce the high concentrations of sodium salts in samples. In this method, trace nitrate was eluted from the concentrator column to the analytical columns, while the matrix fl owed to waste. Neither chemical pre-treatment nor sample dilution was required. In the optimized separation conditions, the method showed good linearity( R >0.99) in the 0.05 and 50 mg/L concentration range, and satisfactory repeatability(RSD<5%, n =6). The limit of detection for nitrate was 0.02 mg/L. Results showed that the valve switching system was suitable and practical for the determination of trace nitrate in seawater.
基金supported by the National Basic Research Program of China (973 program, Grant No. 2014CB441202)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05100503)
文摘The authors quantify the impacts of sulfate and nitrate aerosol formation on surface-layer 03 concentrations over China using the one-way nested-grid capa- bility of the global three-dimensional Goddard Earth Ob- serving System chemical transport model (GEOS-Chem). Chemical reactions associated with sulfate formation are simulated to generally increase 03 concentrations in China. Over the North China Plain (NCP) and the Si- chuan Basin (SCB), where simulated sulfate concentra- tions are the largest, ozone concentrations show maximum increases in spring by 1.8 ppbv (3.2%) in the NCP and by 2.6 ppbv (3.7%) in the SCB. On the contrary, nitrate formation is simulated to reduce 03 concentrations by up to 1.0 ppbv in eastern China, with the largest reduc- tions of 1.0 ppbv (1.4%) in summer over the NCE Ac- counting for the formation of both sulfate and nitrate, the surface-layer O3 concentrations over a large fraction of eastern China are simulated to increase in winter, spring, and autumn, dominated by the impact of sulfate forma- tion, but to decrease in summer because of the dominant contribution from nitrate formation.
基金the National Natural Science Foundation of China(51378330 and51408396)the Natural Science Foundation of Shanxi Province(2013021023-3)
文摘A strain capable of phenol degradation, hetemtrophic nitrification and aerobic denitrification was isolated from activated sludge of coking-plant wastewater ponds under aerobic condition. Based on its morphology, physiology, biochemical analysis and phylogenetic characteristics, the isolate was identified as Diaphorobacter sp. PD-7. Biodegradation tests of phenol showed that the maximum phenol degradation occurred at the late phase of exponential growth stages, with 1400 mg·L^-1 phenol completely degraded within 85 h. Diaphorobacter sp. PD-7 accumulated a vast quantity of phenol hydroxylase in this physiological phase, ensuring that the cells quickly utilize phenol as a sole carbon and energy source. The kinetic behavior ofDiaphorobacter sp. PD-7 in batch cultures was investigated over a wide range of initial phenol concentrations (0-1400mg·L^-1) by using the Haldane model, which adequately describes the dynamic behavior of phenol biodegradation by strain Diaphombacter sp. PD-7. At initial phenol concentration of 1400mg· L^-l, batch experiments (0.25 L flask) of nitrogen removal under aerobic condition gave almost entirely removal of 120.69mg· L^- 1 ammonium nitrogen within 75 h, while nitrate nitrogen removal reached 91% within 65 h. Moreover, hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase were successfully expressed in the isolate.
文摘An understanding of the long-term changes in the nitrate and microbial contamination pattern of the groundwater of Sidi Bouzid (Centre West of Tunisia) is critical to conservation of drinking water in rural areas supporting mixed land-use activities such as cropping, livestock farming, and residence. The phreatic aquifer was revealed polluted by domestic disposals of the wastewaters in the urban zone. The average nitrate concentration in the groundwater of the east of the mioplioquaternary aquifer of Saddaguia (Sidi Bouzid) rose from 50 mg NO3- during 1996 to over 100 mg in 2003, which represents an increase of some 10 mg per year. Nitrate groundwater pollution during the period 1996-2003 was the result of the abusive use of fertilizers.In the cultivated zone, we must reduce the effects of the excessive use of the nitrogen fertilizers on the basis of monitoring soil once a year, managing water resources, rationalizing the use of the chemical substances. In urban zones, most of lost wells located in the perimeter reveal the gravity of the state of the aquifer. This last is organically polluted and requires an immediate action for the generalization of the purification network. We need to take into account the reality of under soil in all future planning's and arrangements. A scheme of sanitation seems necessary before all plans of arrangement. The extension of the sewer network must give the priority to the most vulnerable zones.