The removal of molybdenum from a copper ore concentrate by sodium hypochlorite leaching was investigated. The results show that leaching time,liquid to solid ratio,leaching temperature,agitation speed,and sodium hypoc...The removal of molybdenum from a copper ore concentrate by sodium hypochlorite leaching was investigated. The results show that leaching time,liquid to solid ratio,leaching temperature,agitation speed,and sodium hypochlorite and sodium hydroxide concentrations all have a significant effect on the removal of molybdenum.The optimum process operating parameters were found to be:time,4 h;sodium hydroxide concentration,10%;sodium hypochlorite concentration,8%;liquid to solid ratio,10:1;temperature,50℃;and, agitation speed,500 r/min.Under these conditions the extraction of molybdenum is greater than 99,9%and the extraction of copper is less than 0.01%.A shrinking particle model could be used to describe the leaching process.The apparent activation energy of the dissolution reaction was found to be approximately 8.8 kJ/mol.展开更多
Contribution of first flush runoff events from intense rainfall to downstream aquatic ecosystems are often reported in terms of sediment and nutrient delivery, with hardly any consideration to the contribution that st...Contribution of first flush runoff events from intense rainfall to downstream aquatic ecosystems are often reported in terms of sediment and nutrient delivery, with hardly any consideration to the contribution that standing, concentrated tailwater in primary aquatic systems makes to downstream nutrient loads. Two geographically distinct studies (Jonesboro Arkansas, and Stoneville Mississippi; 4 studies, n = 30) evaluated the effectiveness of drainage ditch systems to mitigate nutrient concentrations and loads. Within each independent study all experimental ditches had elevated background nutrient concentrations as a result of standing water, prior to the start of each simulated runoff experiment. These concentrations remained elevated 15-30 minutes post the start of each simulation as the concentrated, impounded water was pushed out through each system. In both these systems, it was hypothesized that water had accumulated in the respective drainage ditches and had been concentrated though evaporation and aquatic macrophyte transpiration. It is theorized that additional controlled drainage with improved dilution and hydraulic residence management.展开更多
基金the 11th Five-Year Plan of the National Scientific and Technological Program of China(No. 2007BAB22B01)the National Natural Science Foundation of China(No.50704036).
文摘The removal of molybdenum from a copper ore concentrate by sodium hypochlorite leaching was investigated. The results show that leaching time,liquid to solid ratio,leaching temperature,agitation speed,and sodium hypochlorite and sodium hydroxide concentrations all have a significant effect on the removal of molybdenum.The optimum process operating parameters were found to be:time,4 h;sodium hydroxide concentration,10%;sodium hypochlorite concentration,8%;liquid to solid ratio,10:1;temperature,50℃;and, agitation speed,500 r/min.Under these conditions the extraction of molybdenum is greater than 99,9%and the extraction of copper is less than 0.01%.A shrinking particle model could be used to describe the leaching process.The apparent activation energy of the dissolution reaction was found to be approximately 8.8 kJ/mol.
文摘Contribution of first flush runoff events from intense rainfall to downstream aquatic ecosystems are often reported in terms of sediment and nutrient delivery, with hardly any consideration to the contribution that standing, concentrated tailwater in primary aquatic systems makes to downstream nutrient loads. Two geographically distinct studies (Jonesboro Arkansas, and Stoneville Mississippi; 4 studies, n = 30) evaluated the effectiveness of drainage ditch systems to mitigate nutrient concentrations and loads. Within each independent study all experimental ditches had elevated background nutrient concentrations as a result of standing water, prior to the start of each simulated runoff experiment. These concentrations remained elevated 15-30 minutes post the start of each simulation as the concentrated, impounded water was pushed out through each system. In both these systems, it was hypothesized that water had accumulated in the respective drainage ditches and had been concentrated though evaporation and aquatic macrophyte transpiration. It is theorized that additional controlled drainage with improved dilution and hydraulic residence management.