The first floating platform concept design work for South China Sea is undergoing in DMAR's office now. This tension leg platform has potential to become the first advanced floating production platform project. Pr...The first floating platform concept design work for South China Sea is undergoing in DMAR's office now. This tension leg platform has potential to become the first advanced floating production platform project. Project execution is always a challenge for floating system. This paper focuses on the critical elements of project execution for tension leg platform,and studies potential implications to future oil and gas exploration in South China Sea. There are many factors affecting successful execution of floating system project,including technical issues, engineering management,interface management,etc. There are also failure examples of project execution in the industry. The author has participated 28 large detailed projects and has gained extensive experience on floating projects,with ample hands-on project experiences. A detailed tension leg platform project study example and discussions in depth are presented for future project execution in China deepwater development.展开更多
Parametric instability of a riser is caused by fluctuation of its tension in time due to the heave motion of floating platform. Many studies have tackled the problem of parametric instability of a riser with constant ...Parametric instability of a riser is caused by fluctuation of its tension in time due to the heave motion of floating platform. Many studies have tackled the problem of parametric instability of a riser with constant tension. However, tension in the riser actually varies linearly from the top to the bottom due to the effect of gravity. This paper presents the parametric instability analysis of deepwater top-tensioned risers(TTR) considering the linearly varying tension along the length. Firstly, the governing equation of transverse motion of TTR under parametric excitation is established. This equation is reduced to a system of ordinary differential equations by using the Galerkin method. Then the parametric instability of TTR for three calculation models are investigated by applying the Floquet theory. The results show that the natural frequencies of TTR with variable tension are evidently reduced, the parametric instability zones are significantly increased and the maximum allowable amplitude of platform heave is much smaller under the same damping; The nodes and antinodes of mode shape are no longer uniformly distributed along the axial direction and the amplitude also changes with depth, which leads to coupling between the modes. The combination resonance phenomenon occurs as a result of mode coupling, which causes more serious damage.展开更多
An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For thi...An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For this new system, most of collision energy is absorbed through the displacement of floating platforms. In order to illustrate the validity of the system, a series of model tests were conducted at a scale of 1:40. The coupled motion characteristics of the floating mooring platforms were discussed under regular and irregular waves, and the influences of wave direction and other characteristics on dynamic response of the system were analyzed. The results show that the mooring system is safest at 0° of wave incident angle, whereas the most dangerous mooring state occurs at 90° of wave incident angle. Motion responses increase with the increase of wave height, but are not linearly related to changes in wave height.展开更多
As a new type of structure which has never been built, submerged floating tunnel was studied mainly by numerical simulations. To further study the seismic response of a submerged floating tunnel, the first model exper...As a new type of structure which has never been built, submerged floating tunnel was studied mainly by numerical simulations. To further study the seismic response of a submerged floating tunnel, the first model experiment of submerged floating tunnel (SFT) under the earthquake was carried out on the unique underwater shaking table in China. The experimental results show that vertical excitation induces larger response than horizontal and different inclination degrees of the tether also cause different seismic responses. Subsequently, based on the fluid-structure interaction theory, the corresponding numerical model is established. And comparing the numerical results with the experimental results, those of shaking table test. Numerical model adopted is effective for it is shown that the numerical results are basically identical with dynamic response of SFT.展开更多
This paper presents some insights on the state-of-the-art practice that has been utilized recently in the inplace structural strength and fatigue analysis for topsides on deepwater floating platforms such as tension l...This paper presents some insights on the state-of-the-art practice that has been utilized recently in the inplace structural strength and fatigue analysis for topsides on deepwater floating platforms such as tension leg plat-form (TLP) and semi-submersibles. Emphases are put on analysis software,geometric and mass modeling,hydro-dynamic loading and its mapping,and analysis procedures. In addition,for the in-place analysis using structure analysis computer system (SACS),the procedure of Visual Basic for Application (VBA) is developed to map AQWA-LINE hydrodynamic loading to the SACS integrated hull/topsides model;for the in-place analysis using structure engineering system analysis model (SESAM),many computer aided applications are made to aid the post-processing. These applications have been used in structural analyses for a few TLP and semi-submersible plat-form topsides,and are briefly introduced in this paper.展开更多
FDPSO is a multifunction floating platform,which has the integral function of drilling,production,storage and offloading.A spread mooring system is adopted to position the FDPSO.The coupled analysis in time domain for...FDPSO is a multifunction floating platform,which has the integral function of drilling,production,storage and offloading.A spread mooring system is adopted to position the FDPSO.The coupled analysis in time domain for FDPSO system is conducted in the present paper,using the code DeepC.The effect of axial stiffness of the mooring line on the horizontal motion of FDPSO is studied by employing five types of different axial stiffness in the calculation of the motion response of FDPSO vessel.Furthermore,the results of a model test conducted in the State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University are used to investigate the feasibility of the numerical method.展开更多
文摘The first floating platform concept design work for South China Sea is undergoing in DMAR's office now. This tension leg platform has potential to become the first advanced floating production platform project. Project execution is always a challenge for floating system. This paper focuses on the critical elements of project execution for tension leg platform,and studies potential implications to future oil and gas exploration in South China Sea. There are many factors affecting successful execution of floating system project,including technical issues, engineering management,interface management,etc. There are also failure examples of project execution in the industry. The author has participated 28 large detailed projects and has gained extensive experience on floating projects,with ample hands-on project experiences. A detailed tension leg platform project study example and discussions in depth are presented for future project execution in China deepwater development.
基金supported by the National Natural Science Foundation of China (51239008, 51279130, 51079097)Science Fund for Creative Research Groups of the National Natural Science Foundation of China (51021004)
文摘Parametric instability of a riser is caused by fluctuation of its tension in time due to the heave motion of floating platform. Many studies have tackled the problem of parametric instability of a riser with constant tension. However, tension in the riser actually varies linearly from the top to the bottom due to the effect of gravity. This paper presents the parametric instability analysis of deepwater top-tensioned risers(TTR) considering the linearly varying tension along the length. Firstly, the governing equation of transverse motion of TTR under parametric excitation is established. This equation is reduced to a system of ordinary differential equations by using the Galerkin method. Then the parametric instability of TTR for three calculation models are investigated by applying the Floquet theory. The results show that the natural frequencies of TTR with variable tension are evidently reduced, the parametric instability zones are significantly increased and the maximum allowable amplitude of platform heave is much smaller under the same damping; The nodes and antinodes of mode shape are no longer uniformly distributed along the axial direction and the amplitude also changes with depth, which leads to coupling between the modes. The combination resonance phenomenon occurs as a result of mode coupling, which causes more serious damage.
基金the support of the National Natural Science Foundation of China (Grant No. 51309179)the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA051705)+2 种基金the International S&T Cooperation Program of China (Grant No. 2012DFA70490)the State Key Laboratory of Hydraulic Engineering Simulation and Safety (Tianjin University)the Tianjin Municipal Natural Science Foundation (Grant Nos. 14JCQNJC07000 and 13JCYBJC19100)
文摘An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For this new system, most of collision energy is absorbed through the displacement of floating platforms. In order to illustrate the validity of the system, a series of model tests were conducted at a scale of 1:40. The coupled motion characteristics of the floating mooring platforms were discussed under regular and irregular waves, and the influences of wave direction and other characteristics on dynamic response of the system were analyzed. The results show that the mooring system is safest at 0° of wave incident angle, whereas the most dangerous mooring state occurs at 90° of wave incident angle. Motion responses increase with the increase of wave height, but are not linearly related to changes in wave height.
基金Projects(51108224,51179026) supported by the National Natural Science Foundation of China
文摘As a new type of structure which has never been built, submerged floating tunnel was studied mainly by numerical simulations. To further study the seismic response of a submerged floating tunnel, the first model experiment of submerged floating tunnel (SFT) under the earthquake was carried out on the unique underwater shaking table in China. The experimental results show that vertical excitation induces larger response than horizontal and different inclination degrees of the tether also cause different seismic responses. Subsequently, based on the fluid-structure interaction theory, the corresponding numerical model is established. And comparing the numerical results with the experimental results, those of shaking table test. Numerical model adopted is effective for it is shown that the numerical results are basically identical with dynamic response of SFT.
文摘This paper presents some insights on the state-of-the-art practice that has been utilized recently in the inplace structural strength and fatigue analysis for topsides on deepwater floating platforms such as tension leg plat-form (TLP) and semi-submersibles. Emphases are put on analysis software,geometric and mass modeling,hydro-dynamic loading and its mapping,and analysis procedures. In addition,for the in-place analysis using structure analysis computer system (SACS),the procedure of Visual Basic for Application (VBA) is developed to map AQWA-LINE hydrodynamic loading to the SACS integrated hull/topsides model;for the in-place analysis using structure engineering system analysis model (SESAM),many computer aided applications are made to aid the post-processing. These applications have been used in structural analyses for a few TLP and semi-submersible plat-form topsides,and are briefly introduced in this paper.
基金supported by the National Scientific and & Technology Major Project (Grant No.2008zx05026-006)
文摘FDPSO is a multifunction floating platform,which has the integral function of drilling,production,storage and offloading.A spread mooring system is adopted to position the FDPSO.The coupled analysis in time domain for FDPSO system is conducted in the present paper,using the code DeepC.The effect of axial stiffness of the mooring line on the horizontal motion of FDPSO is studied by employing five types of different axial stiffness in the calculation of the motion response of FDPSO vessel.Furthermore,the results of a model test conducted in the State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University are used to investigate the feasibility of the numerical method.