Two floating structures in close proximity are very commonly seen in offshore engineering. They are often subjected to steep waves and, therefore, the transient effects on their hydrodynamic features are of great conc...Two floating structures in close proximity are very commonly seen in offshore engineering. They are often subjected to steep waves and, therefore, the transient effects on their hydrodynamic features are of great concem. This paper uses the quasi arbitrary Lagrangian Eulerian finite element method (QALE-FEM), based on the fully nonlinear potential theory (FNPT), to numerically investigate the interaction between two 3-D floating structures, which undergo motions with 6 degrees of freedom (DOFs), and are subjected to waves with different incident angles. The transient behaviours of floating structures, the effect of the accompanied structures, and the nonlinearity on the motion of and the wave loads on the structures are the main focuses of the study. The investigation reveals an important transient effects causing considerably larger structure motion than that in steady state. The results also indicate that the accompanied structure in close proximity enhances the interaction between different motion modes and results in stronger nonlinearity causing 2hal-order component to be of similar significance to the fundamental one.展开更多
Mathematical models simulating steep waves at a focus point are presented in this paper. Simulations of extreme waves in a model basin were used to determine the loads on floating structures induced by the waves. Base...Mathematical models simulating steep waves at a focus point are presented in this paper. Simulations of extreme waves in a model basin were used to determine the loads on floating structures induced by the waves. Based on a new wave theory, numerical test results show that the simulation procedure is effective and the induced motion of water particles in the front of waves is an important factor influencing impact loads on floating bodies.展开更多
The paper provided an updated status of technology for deepwater field development, demonstrated the importance of its application through actual project example, and discussed some future technical development trends...The paper provided an updated status of technology for deepwater field development, demonstrated the importance of its application through actual project example, and discussed some future technical development trends. The focus was on the floating structures. By reviewing some of the engineering aspects of the project, the technology advancement, innovations and challenges in offshore engineering were discussed and demonstrated. The author’s view of technical challenges facing deepwater forwarding was discussed, which covered water depth limitations, new material application, installation methods, riser development and operational issues. An overview of technologies that will enable deepwater projects to be extended into new frontiers was presented.展开更多
To make sure that the nodule collector can walk on the soft sediments of seafloor effectively, suspension principle of deep-ocean nodule collector is proposed. The supporting and driving mechanisms are separated to av...To make sure that the nodule collector can walk on the soft sediments of seafloor effectively, suspension principle of deep-ocean nodule collector is proposed. The supporting and driving mechanisms are separated to avoid collector sinking. The supporting mechanism is a streamlined body with large and smooth supporting area. The grounding pressure is reduced to 0.5- 1 N/cm2 to make sure that the sinkage is limited. The impellers serve as the driving mechanism to supply enough driving power. The position between the supporting mechanism and the driving mechanism can be adjusted according to the operating condition to decrease the walking resistance and to increase driving efficiency. The test results indicate that the collector can walk on the surface of the soft sediments with the limited sinkage. The traction forces were up to 800 kg and the sinkage of the impeller was under the limitation.展开更多
A simplified method is presented for predicting consolidation settlement of soft ground improved by floating soil-cement column on the basis of double soil-layer consolidation theory. Combining the axisymmetric consol...A simplified method is presented for predicting consolidation settlement of soft ground improved by floating soil-cement column on the basis of double soil-layer consolidation theory. Combining the axisymmetric consolidation model and equal strain assumption, the governing equation was derived for the consolidation of clayey subsoil reinforced by soil-cement column. By modifying the boundary condition of the interface between the improved layer and underlying layer on seepage and pore-water pressure, the analytical solution of consolidation of soft ground improved by floating soil-cement column was developed under depth-dependent ramp load. The results of the parameter analysis of consolidation behavior show that the consolidation rate is closely related with the depth replacement ratio by the column and the permeability of upper layer. The influence of column-soil constrained modulus ratio and radius ratio of the influence zone to the column on consolidation is also affected by depth replacement ratio. The column-soil total stress ratio increases with time and approaches the final value accompanied with the dissipation of excess pore water pressure.展开更多
Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision...Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0° This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS展开更多
Mesozooplankton are key components of coastal ecosystems,linking the microbial food web to the classic food chain.In this study,species composition and abundance of mesozooplankton is studied for the Daya Bay in April...Mesozooplankton are key components of coastal ecosystems,linking the microbial food web to the classic food chain.In this study,species composition and abundance of mesozooplankton is studied for the Daya Bay in April(spring) and October(fall),2006.A total of 27 species of mesozooplankton were identified in spring and 58 species in fall.Dominant species were Oithona tenuis,Flaccisagitta enflata,Penilia avirostris and Centropages tenuiremis in spring,shifting to Microsetella norvegica,Oithona tenuis and Parvocalanus crassirostris in fall.Higher mesozooplankton abundance was found at Aotou Cove and Dapeng'ao Cove compared to other stations,indicating the influence of eutrophication on mesozooplankton community in the Daya Bay.The outbreak of Noctiluca scintillans bloom in spring reduced the species diversity and abundance of mesozooplankton.展开更多
We address problems in the development of large-scale flotation columns that use short cylinders. As a starting point, we investigated the packing medium to identify a highly efficient internal packing for the flotati...We address problems in the development of large-scale flotation columns that use short cylinders. As a starting point, we investigated the packing medium to identify a highly efficient internal packing for the flotation column. The chosen packing was a honeycomb structure with an aperture diameter of 80 mm, a web thickness of 0.80 mm, a film height of 1000 mm, packed into a 400 mm diameter space, which completely filled the vessel at optimal cost. The column consisted of a modular ring of single-hole hexagonal honeycomb tube packing made from atactic polyproplene (PP-R). The packing was tested in a cyclonic, static micro-bubble flotation column. Computational fluid dynamic modeling was used to analyze the flotation fluid in a honeycomb tube packed flotation column. Our results show that the fluid axial movement was maximized and that the transverse fluid velocities were zero in the vicinity of axial flow. Using the honeycomb tube packing for copper sulfide flotation we observed that the average concentration in the product was increased to 25.41%, from an average feed concentration of 0.729%, with an average recovery of 92.92%. The demands of on-site industrial production were met.展开更多
The present condition of Southern Kazakhstan natural reservoirs is represented in the article. The research was held in summer time of 2010. Quantitative and qualitative features and dominating types of zooplankton of...The present condition of Southern Kazakhstan natural reservoirs is represented in the article. The research was held in summer time of 2010. Quantitative and qualitative features and dominating types of zooplankton of the individual reservoirs are shown. It is detected that the waters of the South Kazakhstan oblast (region) are inhabited by 70 types of zooplankton organisms of different taxonomic groups, whose association to certain reservoir depends on the hydrochemical indicators of the aquatic environment.展开更多
A numerical model was developed by using the dual boundary element method to investigate the dynamic behavior of a moored floating structure with a pair of vertical and flexible skirts attached at its bottom in the li...A numerical model was developed by using the dual boundary element method to investigate the dynamic behavior of a moored floating structure with a pair of vertical and flexible skirts attached at its bottom in the linear wave field. Theoretical conception is based on potential theory with linear external forces. The motions of the structure were assumed to be small and linear. The flexible skirts mounted beneath the structure were assumed uniform flexural rigidity and the thickness of the skirts was negligible. Comparison between the present model and Gesraha's solution was made to verify the results for a moored floating structure with or without rigid skirts. The influence of the skirt rigidity on the moored floating structure, moored lines and waves is investigated in this study. The results show that, the natural frequencies of structure's oscillation, moored force, wave reflection and transmission tend to the region of short-period waves when the flexible rigidity gradually decreases. Positive correlation exists between the aft mooring force and the pitch motion of the floating structure.展开更多
[Introduction] Accurate calculation of the hydrodynamic coefficients for floating structures and the investigation of the flow field distribution around floating bodies on the marine free surface are essential for imp...[Introduction] Accurate calculation of the hydrodynamic coefficients for floating structures and the investigation of the flow field distribution around floating bodies on the marine free surface are essential for improving the engineering design and application of marine structures.[Method] This study utilized the computational fluid dynamics(CFD) approach and the Reynolds Averaged NavierStokes(RANS) method and considered the effects of viscosity and free surface interactions on the hydrodynamic behavior of floating structures.By employing the dynamic mesh technique,this study simulated the periodic movements of simplified three-dimensional(3D)shapes:spheres,cylinders,and cubes,which were representative of complex marine structures.The volume of fluid(VOF) method was leveraged to accurately track the nonlinear behavior of the free surface.In this analysis,the added mass and damping coefficients for the fundamental modes of motion(surge,heave,and roll) were calculated across a spectrum of frequencies,facilitating the fast determination of hydrodynamic forces and moments exerted on floating structures.[Result] The results of this study are not only consistent with the results of the 3D potential flow theory but also further reflect the role of viscosity.This method can be used for precise calculation of the hydrodynamic coefficients of floating structures and for describing the flow field of such structures in motion on a free surface.[Conclusion] The methodology presented goes beyond the traditional potential flow approach.展开更多
基金Supported by EPSRC/FSC (EP/I502033/1) and Leverhulme Trust (ECF/40348), UK
文摘Two floating structures in close proximity are very commonly seen in offshore engineering. They are often subjected to steep waves and, therefore, the transient effects on their hydrodynamic features are of great concem. This paper uses the quasi arbitrary Lagrangian Eulerian finite element method (QALE-FEM), based on the fully nonlinear potential theory (FNPT), to numerically investigate the interaction between two 3-D floating structures, which undergo motions with 6 degrees of freedom (DOFs), and are subjected to waves with different incident angles. The transient behaviours of floating structures, the effect of the accompanied structures, and the nonlinearity on the motion of and the wave loads on the structures are the main focuses of the study. The investigation reveals an important transient effects causing considerably larger structure motion than that in steady state. The results also indicate that the accompanied structure in close proximity enhances the interaction between different motion modes and results in stronger nonlinearity causing 2hal-order component to be of similar significance to the fundamental one.
基金Supported by the National 863 Plan Foundation under Grant No.2006AA09A104.
文摘Mathematical models simulating steep waves at a focus point are presented in this paper. Simulations of extreme waves in a model basin were used to determine the loads on floating structures induced by the waves. Based on a new wave theory, numerical test results show that the simulation procedure is effective and the induced motion of water particles in the front of waves is an important factor influencing impact loads on floating bodies.
文摘The paper provided an updated status of technology for deepwater field development, demonstrated the importance of its application through actual project example, and discussed some future technical development trends. The focus was on the floating structures. By reviewing some of the engineering aspects of the project, the technology advancement, innovations and challenges in offshore engineering were discussed and demonstrated. The author’s view of technical challenges facing deepwater forwarding was discussed, which covered water depth limitations, new material application, installation methods, riser development and operational issues. An overview of technologies that will enable deepwater projects to be extended into new frontiers was presented.
基金Project(2012AA091201) supported by the National High Technology Research and Development Program of China
文摘To make sure that the nodule collector can walk on the soft sediments of seafloor effectively, suspension principle of deep-ocean nodule collector is proposed. The supporting and driving mechanisms are separated to avoid collector sinking. The supporting mechanism is a streamlined body with large and smooth supporting area. The grounding pressure is reduced to 0.5- 1 N/cm2 to make sure that the sinkage is limited. The impellers serve as the driving mechanism to supply enough driving power. The position between the supporting mechanism and the driving mechanism can be adjusted according to the operating condition to decrease the walking resistance and to increase driving efficiency. The test results indicate that the collector can walk on the surface of the soft sediments with the limited sinkage. The traction forces were up to 800 kg and the sinkage of the impeller was under the limitation.
基金Project(51278450)supported by the National Natural Science Foundation of China
文摘A simplified method is presented for predicting consolidation settlement of soft ground improved by floating soil-cement column on the basis of double soil-layer consolidation theory. Combining the axisymmetric consolidation model and equal strain assumption, the governing equation was derived for the consolidation of clayey subsoil reinforced by soil-cement column. By modifying the boundary condition of the interface between the improved layer and underlying layer on seepage and pore-water pressure, the analytical solution of consolidation of soft ground improved by floating soil-cement column was developed under depth-dependent ramp load. The results of the parameter analysis of consolidation behavior show that the consolidation rate is closely related with the depth replacement ratio by the column and the permeability of upper layer. The influence of column-soil constrained modulus ratio and radius ratio of the influence zone to the column on consolidation is also affected by depth replacement ratio. The column-soil total stress ratio increases with time and approaches the final value accompanied with the dissipation of excess pore water pressure.
基金Foundation item: Supported by the National Natural Science Foundation of China (51309123), National Key Basic Research and Development Plan (973 Plan, 2013CB036104), Jiangsu Province Natural Science Research Projects in Colleges and Universities (13KJB570002), Open Foundation of State Key Laboratory of Ocean Engineering (1407), "Qing Lan Project" of Colleges and Universities in Jiangsu Province, Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0° This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS
基金supported by the National Nature Science Foundation of China(Nos.41276159,41130855)the Special Fund of Basic Research for Centre Commonweal Scientific Research Institute(Nos.2007ZD07,2011TS06,2013TS07)
文摘Mesozooplankton are key components of coastal ecosystems,linking the microbial food web to the classic food chain.In this study,species composition and abundance of mesozooplankton is studied for the Daya Bay in April(spring) and October(fall),2006.A total of 27 species of mesozooplankton were identified in spring and 58 species in fall.Dominant species were Oithona tenuis,Flaccisagitta enflata,Penilia avirostris and Centropages tenuiremis in spring,shifting to Microsetella norvegica,Oithona tenuis and Parvocalanus crassirostris in fall.Higher mesozooplankton abundance was found at Aotou Cove and Dapeng'ao Cove compared to other stations,indicating the influence of eutrophication on mesozooplankton community in the Daya Bay.The outbreak of Noctiluca scintillans bloom in spring reduced the species diversity and abundance of mesozooplankton.
基金Project 2007AA05Z339 supported by the National High-Tech Research and Development Program of China
文摘We address problems in the development of large-scale flotation columns that use short cylinders. As a starting point, we investigated the packing medium to identify a highly efficient internal packing for the flotation column. The chosen packing was a honeycomb structure with an aperture diameter of 80 mm, a web thickness of 0.80 mm, a film height of 1000 mm, packed into a 400 mm diameter space, which completely filled the vessel at optimal cost. The column consisted of a modular ring of single-hole hexagonal honeycomb tube packing made from atactic polyproplene (PP-R). The packing was tested in a cyclonic, static micro-bubble flotation column. Computational fluid dynamic modeling was used to analyze the flotation fluid in a honeycomb tube packed flotation column. Our results show that the fluid axial movement was maximized and that the transverse fluid velocities were zero in the vicinity of axial flow. Using the honeycomb tube packing for copper sulfide flotation we observed that the average concentration in the product was increased to 25.41%, from an average feed concentration of 0.729%, with an average recovery of 92.92%. The demands of on-site industrial production were met.
文摘The present condition of Southern Kazakhstan natural reservoirs is represented in the article. The research was held in summer time of 2010. Quantitative and qualitative features and dominating types of zooplankton of the individual reservoirs are shown. It is detected that the waters of the South Kazakhstan oblast (region) are inhabited by 70 types of zooplankton organisms of different taxonomic groups, whose association to certain reservoir depends on the hydrochemical indicators of the aquatic environment.
文摘A numerical model was developed by using the dual boundary element method to investigate the dynamic behavior of a moored floating structure with a pair of vertical and flexible skirts attached at its bottom in the linear wave field. Theoretical conception is based on potential theory with linear external forces. The motions of the structure were assumed to be small and linear. The flexible skirts mounted beneath the structure were assumed uniform flexural rigidity and the thickness of the skirts was negligible. Comparison between the present model and Gesraha's solution was made to verify the results for a moored floating structure with or without rigid skirts. The influence of the skirt rigidity on the moored floating structure, moored lines and waves is investigated in this study. The results show that, the natural frequencies of structure's oscillation, moored force, wave reflection and transmission tend to the region of short-period waves when the flexible rigidity gradually decreases. Positive correlation exists between the aft mooring force and the pitch motion of the floating structure.
文摘[Introduction] Accurate calculation of the hydrodynamic coefficients for floating structures and the investigation of the flow field distribution around floating bodies on the marine free surface are essential for improving the engineering design and application of marine structures.[Method] This study utilized the computational fluid dynamics(CFD) approach and the Reynolds Averaged NavierStokes(RANS) method and considered the effects of viscosity and free surface interactions on the hydrodynamic behavior of floating structures.By employing the dynamic mesh technique,this study simulated the periodic movements of simplified three-dimensional(3D)shapes:spheres,cylinders,and cubes,which were representative of complex marine structures.The volume of fluid(VOF) method was leveraged to accurately track the nonlinear behavior of the free surface.In this analysis,the added mass and damping coefficients for the fundamental modes of motion(surge,heave,and roll) were calculated across a spectrum of frequencies,facilitating the fast determination of hydrodynamic forces and moments exerted on floating structures.[Result] The results of this study are not only consistent with the results of the 3D potential flow theory but also further reflect the role of viscosity.This method can be used for precise calculation of the hydrodynamic coefficients of floating structures and for describing the flow field of such structures in motion on a free surface.[Conclusion] The methodology presented goes beyond the traditional potential flow approach.