目的分析非瓣膜性持续性心房颤动患者华法林抗凝治疗稳定性达标情况,并比较5种INR在治疗目标范围内的时间百分比(TTR)计算方法的应用情况。方法选取2015—2016年在九江市第一人民医院就诊的83例非瓣膜性持续性心房颤动患者作为A组,均采...目的分析非瓣膜性持续性心房颤动患者华法林抗凝治疗稳定性达标情况,并比较5种INR在治疗目标范围内的时间百分比(TTR)计算方法的应用情况。方法选取2015—2016年在九江市第一人民医院就诊的83例非瓣膜性持续性心房颤动患者作为A组,均采用随访次数达标计算法及HKU AF CAL应用软件计算TTR;另选取2018—2020年在九江市第一人民医院就诊的172例非瓣膜性持续性心房颤动患者作为B组,均采用随访次数达标计算法、随访天数达标计算法、抗凝助手软件、INR平均值浮动计算法计算TTR。本研究以TTR>65%为抗凝治疗稳定性达标,计算五种TTR计算方法得到的抗凝治疗稳定性达标率,比较A组患者随访次数达标计算法与HKU AF CAL应用软件计算的TTR;以随访次数达标计算法为参照,分别比较其与随访天数达标计算法、抗凝助手软件及INR平均值浮动计算法计算的TTR。结果A组患者随访次数达标计算法、HKU AF CAL应用软件计算的抗凝治疗稳定性达标率均为38.55%(32/83);随访次数达标计算法与HKU AF CAL应用软件计算的TTR比较,差异无统计学意义(P>0.05);Bland-Altman图分析结果显示,HKU AF CAL应用软件和随访次数达标计算法计算的TTR差值的均值为2.747%〔95%CI(-4.822%,5.948%)〕,绝大多数差值在95%CI范围内。B组患者随访次数达标计算法、随访天数达标计算法、抗凝助手软件及INR平均值浮动计算法计算的抗凝治疗稳定性达标率分别为26.74%(46/172)、11.05%(19/172)、40.69%(70/172)、26.16%(45/172)。随访天数达标计算法计算的TTR低于随访次数达标计算法,抗凝助手软件计算法计算的TTR高于随访次数达标计算法(P<0.05);平均INR浮动计算法与随访次数达标计算法计算的TTR比较,差异无统计学意义(P>0.05)。结论非瓣膜性持续性心房颤动患者华法林抗凝治疗稳定性达标率不高;与随访次数达标计算法相比,随访天数达标计算法计算的TTR较低,抗凝助手软件计算法计算的TTR较高,而HKU AF CAL应用软件及INR平均值浮动计算法计算的TTR相似。展开更多
Mathematical models simulating steep waves at a focus point are presented in this paper. Simulations of extreme waves in a model basin were used to determine the loads on floating structures induced by the waves. Base...Mathematical models simulating steep waves at a focus point are presented in this paper. Simulations of extreme waves in a model basin were used to determine the loads on floating structures induced by the waves. Based on a new wave theory, numerical test results show that the simulation procedure is effective and the induced motion of water particles in the front of waves is an important factor influencing impact loads on floating bodies.展开更多
In this paper, we investigate the dynamical behavior of a fractional order phytoplankton- zooplankton system. In this paper, stability analysis of the phytoplankton zooplankton model (PZM) is studied by using the fr...In this paper, we investigate the dynamical behavior of a fractional order phytoplankton- zooplankton system. In this paper, stability analysis of the phytoplankton zooplankton model (PZM) is studied by using the fractional Routh-Hurwitz stability conditions. We have studied the local stability of the equilibrium points of PZM. We applied an efficient numerical method based on converting the fractional derivative to integer derivative to solve the PZM.展开更多
文摘目的分析非瓣膜性持续性心房颤动患者华法林抗凝治疗稳定性达标情况,并比较5种INR在治疗目标范围内的时间百分比(TTR)计算方法的应用情况。方法选取2015—2016年在九江市第一人民医院就诊的83例非瓣膜性持续性心房颤动患者作为A组,均采用随访次数达标计算法及HKU AF CAL应用软件计算TTR;另选取2018—2020年在九江市第一人民医院就诊的172例非瓣膜性持续性心房颤动患者作为B组,均采用随访次数达标计算法、随访天数达标计算法、抗凝助手软件、INR平均值浮动计算法计算TTR。本研究以TTR>65%为抗凝治疗稳定性达标,计算五种TTR计算方法得到的抗凝治疗稳定性达标率,比较A组患者随访次数达标计算法与HKU AF CAL应用软件计算的TTR;以随访次数达标计算法为参照,分别比较其与随访天数达标计算法、抗凝助手软件及INR平均值浮动计算法计算的TTR。结果A组患者随访次数达标计算法、HKU AF CAL应用软件计算的抗凝治疗稳定性达标率均为38.55%(32/83);随访次数达标计算法与HKU AF CAL应用软件计算的TTR比较,差异无统计学意义(P>0.05);Bland-Altman图分析结果显示,HKU AF CAL应用软件和随访次数达标计算法计算的TTR差值的均值为2.747%〔95%CI(-4.822%,5.948%)〕,绝大多数差值在95%CI范围内。B组患者随访次数达标计算法、随访天数达标计算法、抗凝助手软件及INR平均值浮动计算法计算的抗凝治疗稳定性达标率分别为26.74%(46/172)、11.05%(19/172)、40.69%(70/172)、26.16%(45/172)。随访天数达标计算法计算的TTR低于随访次数达标计算法,抗凝助手软件计算法计算的TTR高于随访次数达标计算法(P<0.05);平均INR浮动计算法与随访次数达标计算法计算的TTR比较,差异无统计学意义(P>0.05)。结论非瓣膜性持续性心房颤动患者华法林抗凝治疗稳定性达标率不高;与随访次数达标计算法相比,随访天数达标计算法计算的TTR较低,抗凝助手软件计算法计算的TTR较高,而HKU AF CAL应用软件及INR平均值浮动计算法计算的TTR相似。
基金Supported by the National 863 Plan Foundation under Grant No.2006AA09A104.
文摘Mathematical models simulating steep waves at a focus point are presented in this paper. Simulations of extreme waves in a model basin were used to determine the loads on floating structures induced by the waves. Based on a new wave theory, numerical test results show that the simulation procedure is effective and the induced motion of water particles in the front of waves is an important factor influencing impact loads on floating bodies.
文摘In this paper, we investigate the dynamical behavior of a fractional order phytoplankton- zooplankton system. In this paper, stability analysis of the phytoplankton zooplankton model (PZM) is studied by using the fractional Routh-Hurwitz stability conditions. We have studied the local stability of the equilibrium points of PZM. We applied an efficient numerical method based on converting the fractional derivative to integer derivative to solve the PZM.