As is well known to mineral processing scientists and engineers, fine and ultrafine particles are difficult to float mainly due to the low bubble-particle collision efficiencies. Though many efforts have been made to ...As is well known to mineral processing scientists and engineers, fine and ultrafine particles are difficult to float mainly due to the low bubble-particle collision efficiencies. Though many efforts have been made to improve flotation performance of fine and ultrafine particles, there is still much more to be done. In this paper, the effects of nano-microbubbles (nanobuhbles and microbubbles) on the flotation of fine (-38 + 14.36 μm) and ultrafine (-14.36 + 5μm) chalcopyrite particles were investigated in a laboratory scale Denver flotation cell. Nano-microbubbles were generated using a specially-designed nano- microbubble generator based on the cavitation phenomenon in Venturi tubes. In order to better under- stand the mechanisms of nano-microbubble enhanced froth flotation of fine and ultrafine chalcopyrite particles, the nano-microbubble size distribution, stability and the effect of frother concentration on nano- bubble size were also studied by a laser diffraction method. Comparative flotation tests were performed in the presence and absence of nano-microbubbles to evaluate their impact on the fine and ultrafine chalcopyrite particle flotation recovery. According to the results, the mean size of nano-microbubbles increased over time, and decreased with increase of frother concentration. The laboratory-scale flotation test results indicated that flotation recovery of chalcopyrite fine and ultrafine particles increased by approximately 16-21% in the presence of nano-microbubbles, depending on operating conditions of the process. The presence of nano-microbubbles increased the recovery of ultrafine particles (-14.36 + 5 μm) more than that of fine particles (-38 + 14.36 μm). Another major advantage is that the use of nano-microbubbles reduced the collector and frother consumptions by up to 75% and 50%, respectively.展开更多
In this paper,the effect of various electrochemical environments in the galena flotation is investigated.The electrochemical environments consisted of a ball mill for grinding of galena ore and a Denver flotation cell...In this paper,the effect of various electrochemical environments in the galena flotation is investigated.The electrochemical environments consisted of a ball mill for grinding of galena ore and a Denver flotation cell for flotation of galena in the laboratory scale.In order to achieve the maximum recovery with sodium hyposulfite,the concentrations of 0.06 and 0.12 M of air and nitrogen gases have been used to control the pulp potential in the Denver flotation cell.The galena sample was from the ''Era mine'' which is located in the Kiyasar area,north of Iran.This mine contains:Galena(PbS) at least 22%,Fluorite(CaF 2) 73.37%,Quartz(SiO 2) 2.54% and other minerals such as Cerussite(PbCO 3) and Kaolinite(Al 2 Si 2 O 5(OH) 4).Flotation of Galena was conducted in a 0.12 M of sodium hyposulfite solution.It was found that the amount of recovery by this process was 85% and 63% in the presence and absence of potassium amyl xanthate(KAX) and at an estimated potential of 280 to 350 mV respectively while the recovery was 70% and 52% at an approximate potential of 175 to 210 mV in water in the presence and absence of collector(KAX).展开更多
Froth flotation is used widely for upgrading raw phosphate.The flotation recovery of coarse phosphate(-1.18+0.425 mm) is much lower than that achieved on the-0.425+0.15 mm size fraction.Enhanced recovery of coarse pho...Froth flotation is used widely for upgrading raw phosphate.The flotation recovery of coarse phosphate(-1.18+0.425 mm) is much lower than that achieved on the-0.425+0.15 mm size fraction.Enhanced recovery of coarse phosphate particles is of great economic and environmental importance for phosphate industry.In this investigation,four different phosphate samples were aquired,characterized and tested in a specially designed laboratory-scale flotation column.Significant recovery improvement of coarse phosphate flotation was achieved using cavitation-generated nanobubble though its effects differ among the four testing phosphate samples.The laboratory-scale flotation column test results indicate that nanobubble increased P_2O_5 recovery by up to 10%~30%for a given Acid Insoluble(A.I.) rejection,depending on the characteristic of phosphate samples.The improvement effect of nanobubble on the hard-to-float particles was more significant than that on easy-to-float particles,especially at lower collector dosages.Nanobubbles reduced the collector dosage by 1/3 to 1/2.Nanobubbles almost doubled the coarse phosphate flotation rate constant and increased the flotation selectivity index by up to 25%.展开更多
The discrete excitation-emission-matrix fluorescence spectra (EEMS) at 12 excitation wavelengths (400, 430, 450, 460, 470, 490, 500, 510, 525, 550, 570, and 590 nm) and emission wavelengths ranging from 600-750 nm wer...The discrete excitation-emission-matrix fluorescence spectra (EEMS) at 12 excitation wavelengths (400, 430, 450, 460, 470, 490, 500, 510, 525, 550, 570, and 590 nm) and emission wavelengths ranging from 600-750 nm were determined for 43 phytoplankton species. A two-rank fluorescence spectra database was established by wavelet analysis and a fluorometric discrimination technique for determining phytoplankton population was developed. For laboratory simulatively mixed samples, the samples mixed from 43 algal species (the algae of one division accounted for 25%, 50%, 75%, 85%, and 100% of the gross biomass, respectively), the average discrimination rates at the level of division were 65.0%, 87.5%, 98.6%, 99.0%, and 99.1%, with average relative contents of 18.9%, 44.5%, 68.9%, 73.4%, and 82.9%, respectively; the samples mixed from 32 red tide algal species (the dominant species accounted for 60%, 70%, 80%, 90%, and 100% of the gross biomass, respectively), the average correct discrimination rates of the dominant species at the level of genus were 63.3%, 74.2%, 78.8%, 83.4%, and 79.4%, respectively. For the 81 laboratory mixed samples with the dominant species accounting for 75% of the gross biomass (chlorophyll), the discrimination rates of the dominant species were 95.1% and 72.8% at the level of division and genus, respectively. For the 12 samples collected from the mesocosm experiment in Maidao Bay of Qingdao in August 2007, the dominant species of the 11 samples were recognized at the division level and the dominant species of four of the five samples in which the dominant species accounted for more than 80% of the gross biomass were discriminated at the genus level; for the 12 samples obtained from Jiaozhou Bay in August 2007, the dominant species of all the 12 samples were recognized at the division level. The technique can be directly applied to fluorescence spectrophotometers and to the developing of an in situ algae fluorescence auto-analyzer for phytoplankton population.展开更多
We studied the role of sophorolipid in inhibiting harmful algae bloom (HAB). Different sophorolipid concentrations were tested on marine microalgae, zooplankton, fish, and bivalve (Mytilus edulis) in laboratory. T...We studied the role of sophorolipid in inhibiting harmful algae bloom (HAB). Different sophorolipid concentrations were tested on marine microalgae, zooplankton, fish, and bivalve (Mytilus edulis) in laboratory. The result shows that sophorolipid could inhibit the growth of algal species selectively. Among three algae species selected, Platymonas helgolandica var. tsingtaoensis was promoted with increasing sophorolipid concentration; Isochrysis galbana was inhibited seven days later in sophorolipid concentration below 40 mg/L; and Nitzschia closterium f. minutissima was inhibited obviously in only a high sophorolipid concentration over 20 mg/L. Therefore, sophorolipid in a low concentration at 〈20 mg/L could remove certain harmful algae species effectivelywithout harming other non-harmful microalgae. For other animals, sophorolipid could inhibit the growth of ciliate Strombidium sp. by 50% at 20 mg/L sophorolipid concentration after 96 h. The concentration in 96-h LC50 for Calanus sinicus, Neomysis awatschensis, Lateolabrax japonicus, and Paralichthys olivaceus was 15, 150, 60, and 110 mg/L, respectively. The 24 h LC50 value for Arternia salina was 600 mg/L. The relative clearance rate of mussel Mytilus edulis decreased to 80%, 40%, and 20% of the control group after being exposed to 20, 50, and 100 mg/L sophorolipid for 24 h. Therefore, the toxicity for mitigation of harmful algae bloom at previously recommended concentration of 5-20 mg/L sophorolipid is low for most tested organisms in this reaserch.展开更多
基金the Tarbiat Modares University (TMU), the Iran Mineral Processing Research Center (IMPRC) and the IMIDRO for the technical assistance and financial support
文摘As is well known to mineral processing scientists and engineers, fine and ultrafine particles are difficult to float mainly due to the low bubble-particle collision efficiencies. Though many efforts have been made to improve flotation performance of fine and ultrafine particles, there is still much more to be done. In this paper, the effects of nano-microbubbles (nanobuhbles and microbubbles) on the flotation of fine (-38 + 14.36 μm) and ultrafine (-14.36 + 5μm) chalcopyrite particles were investigated in a laboratory scale Denver flotation cell. Nano-microbubbles were generated using a specially-designed nano- microbubble generator based on the cavitation phenomenon in Venturi tubes. In order to better under- stand the mechanisms of nano-microbubble enhanced froth flotation of fine and ultrafine chalcopyrite particles, the nano-microbubble size distribution, stability and the effect of frother concentration on nano- bubble size were also studied by a laser diffraction method. Comparative flotation tests were performed in the presence and absence of nano-microbubbles to evaluate their impact on the fine and ultrafine chalcopyrite particle flotation recovery. According to the results, the mean size of nano-microbubbles increased over time, and decreased with increase of frother concentration. The laboratory-scale flotation test results indicated that flotation recovery of chalcopyrite fine and ultrafine particles increased by approximately 16-21% in the presence of nano-microbubbles, depending on operating conditions of the process. The presence of nano-microbubbles increased the recovery of ultrafine particles (-14.36 + 5 μm) more than that of fine particles (-38 + 14.36 μm). Another major advantage is that the use of nano-microbubbles reduced the collector and frother consumptions by up to 75% and 50%, respectively.
基金supported by the Islamic Azad University,Savadkooh Branch
文摘In this paper,the effect of various electrochemical environments in the galena flotation is investigated.The electrochemical environments consisted of a ball mill for grinding of galena ore and a Denver flotation cell for flotation of galena in the laboratory scale.In order to achieve the maximum recovery with sodium hyposulfite,the concentrations of 0.06 and 0.12 M of air and nitrogen gases have been used to control the pulp potential in the Denver flotation cell.The galena sample was from the ''Era mine'' which is located in the Kiyasar area,north of Iran.This mine contains:Galena(PbS) at least 22%,Fluorite(CaF 2) 73.37%,Quartz(SiO 2) 2.54% and other minerals such as Cerussite(PbCO 3) and Kaolinite(Al 2 Si 2 O 5(OH) 4).Flotation of Galena was conducted in a 0.12 M of sodium hyposulfite solution.It was found that the amount of recovery by this process was 85% and 63% in the presence and absence of potassium amyl xanthate(KAX) and at an estimated potential of 280 to 350 mV respectively while the recovery was 70% and 52% at an approximate potential of 175 to 210 mV in water in the presence and absence of collector(KAX).
基金the Florida Institute of Phosphate Research(FIPR),The Center for Advanced Separation Technologies(CAST) and the National Natural Science Foundation of China (Nos.50921002 and 90510002) for the financial supportCF Industry Inc and Mosaic Company for supplying specimens and ArrMaz Custom Chemicals Inc.for providing chemicals employed in this study.
文摘Froth flotation is used widely for upgrading raw phosphate.The flotation recovery of coarse phosphate(-1.18+0.425 mm) is much lower than that achieved on the-0.425+0.15 mm size fraction.Enhanced recovery of coarse phosphate particles is of great economic and environmental importance for phosphate industry.In this investigation,four different phosphate samples were aquired,characterized and tested in a specially designed laboratory-scale flotation column.Significant recovery improvement of coarse phosphate flotation was achieved using cavitation-generated nanobubble though its effects differ among the four testing phosphate samples.The laboratory-scale flotation column test results indicate that nanobubble increased P_2O_5 recovery by up to 10%~30%for a given Acid Insoluble(A.I.) rejection,depending on the characteristic of phosphate samples.The improvement effect of nanobubble on the hard-to-float particles was more significant than that on easy-to-float particles,especially at lower collector dosages.Nanobubbles reduced the collector dosage by 1/3 to 1/2.Nanobubbles almost doubled the coarse phosphate flotation rate constant and increased the flotation selectivity index by up to 25%.
基金supported by National High-Tech Research and Development Program of China (863 Program)(No.2009AA063005)Natural Science Foundation of Shandong Province (No.ZR2009EM001)
文摘The discrete excitation-emission-matrix fluorescence spectra (EEMS) at 12 excitation wavelengths (400, 430, 450, 460, 470, 490, 500, 510, 525, 550, 570, and 590 nm) and emission wavelengths ranging from 600-750 nm were determined for 43 phytoplankton species. A two-rank fluorescence spectra database was established by wavelet analysis and a fluorometric discrimination technique for determining phytoplankton population was developed. For laboratory simulatively mixed samples, the samples mixed from 43 algal species (the algae of one division accounted for 25%, 50%, 75%, 85%, and 100% of the gross biomass, respectively), the average discrimination rates at the level of division were 65.0%, 87.5%, 98.6%, 99.0%, and 99.1%, with average relative contents of 18.9%, 44.5%, 68.9%, 73.4%, and 82.9%, respectively; the samples mixed from 32 red tide algal species (the dominant species accounted for 60%, 70%, 80%, 90%, and 100% of the gross biomass, respectively), the average correct discrimination rates of the dominant species at the level of genus were 63.3%, 74.2%, 78.8%, 83.4%, and 79.4%, respectively. For the 81 laboratory mixed samples with the dominant species accounting for 75% of the gross biomass (chlorophyll), the discrimination rates of the dominant species were 95.1% and 72.8% at the level of division and genus, respectively. For the 12 samples collected from the mesocosm experiment in Maidao Bay of Qingdao in August 2007, the dominant species of the 11 samples were recognized at the division level and the dominant species of four of the five samples in which the dominant species accounted for more than 80% of the gross biomass were discriminated at the genus level; for the 12 samples obtained from Jiaozhou Bay in August 2007, the dominant species of all the 12 samples were recognized at the division level. The technique can be directly applied to fluorescence spectrophotometers and to the developing of an in situ algae fluorescence auto-analyzer for phytoplankton population.
基金Supported by the National Natural Science Foundation of China (No. 40506026,40876083,40631008)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-Q07-01)the National Basic Research Priorities Program (No. 2006CB400606)
文摘We studied the role of sophorolipid in inhibiting harmful algae bloom (HAB). Different sophorolipid concentrations were tested on marine microalgae, zooplankton, fish, and bivalve (Mytilus edulis) in laboratory. The result shows that sophorolipid could inhibit the growth of algal species selectively. Among three algae species selected, Platymonas helgolandica var. tsingtaoensis was promoted with increasing sophorolipid concentration; Isochrysis galbana was inhibited seven days later in sophorolipid concentration below 40 mg/L; and Nitzschia closterium f. minutissima was inhibited obviously in only a high sophorolipid concentration over 20 mg/L. Therefore, sophorolipid in a low concentration at 〈20 mg/L could remove certain harmful algae species effectivelywithout harming other non-harmful microalgae. For other animals, sophorolipid could inhibit the growth of ciliate Strombidium sp. by 50% at 20 mg/L sophorolipid concentration after 96 h. The concentration in 96-h LC50 for Calanus sinicus, Neomysis awatschensis, Lateolabrax japonicus, and Paralichthys olivaceus was 15, 150, 60, and 110 mg/L, respectively. The 24 h LC50 value for Arternia salina was 600 mg/L. The relative clearance rate of mussel Mytilus edulis decreased to 80%, 40%, and 20% of the control group after being exposed to 20, 50, and 100 mg/L sophorolipid for 24 h. Therefore, the toxicity for mitigation of harmful algae bloom at previously recommended concentration of 5-20 mg/L sophorolipid is low for most tested organisms in this reaserch.