[Objective] The plankton and macrobenthos samples in municipal polluted river were analyzed by different methods, so as to explore the method suitable for biological data analysis in heavy polluted area. [Method] Shan...[Objective] The plankton and macrobenthos samples in municipal polluted river were analyzed by different methods, so as to explore the method suitable for biological data analysis in heavy polluted area. [Method] Shannon-Wiener diversity index, cluster analysis of multivariate statistical analysis and MDS (Non-matric Multi- dimentional Scaling)analysis were used to analyze biological data of phytoplankton, zooplankton and Zoobenthos collected from the representative municipal polluted river in Pearl River Delta. The sediment samples were also collected to determine. Pb, Cd, Hg, Cr, As, Cu, Ni, Zn, as well as CODe, and NH3-N of porewater. Hakanson potential ecological risk index method was used to evaluate the ecological risk. [Re- suit] Shannon-Wiener diversity index analysis results can not effectively reflect the difference of pollution status of various stations in heavy polluted area; despite the presence of some problems, multivariate analysis method is superior to the Shannon-Wiener diversity index method in biological monitoring of heavy polluted river in the city. [Conclusion] The paper provided theoretical basis for biological data analysis in heavy polluted area.展开更多
This paper is concerned with the hydroelastic problem of a very large pontoon-type floating structure(VLFS) edged with a pair of submerged horizontal plates, which is a combination of perforated and non-perforated pla...This paper is concerned with the hydroelastic problem of a very large pontoon-type floating structure(VLFS) edged with a pair of submerged horizontal plates, which is a combination of perforated and non-perforated plates attached to the for-end and back-end of the VLFS. For the hydroelastic analysis, the fluid is assumed to be ideal and its motion is irrotational so that a velocity potential exists. The VLFS is modeled as an elastic plate according to the classical thin plate theory. The fluid-structure interaction problem is separated into conventional hydrodynamics and structure dynamics by using modal expansion method in the frequency-domain. It involves, firstly, the deflection of the VLFS, which is expressed by a superposition of modal functions and corresponding modal amplitudes. Then the boundary element method is used to solve the integral equations of diffraction and radiation on the body surface for the velocity potential, whereas the vibration equation is solved by the Galerkin's method for modal amplitudes, and then the deflection is obtained by the sum of multiplying modal functions with modal amplitudes. This study examines the effects of the width and location of the non-perforated horizontal plates on the hydroelastic response of the VLFS, then the performance of perforated plates is investigated to reduce the motion near the fore-end of the VLFS. Considering the advantages and disadvantages of submerged plates without and with cylindrical holes, we propose a simple anti-motion device, which is a combination of a pair of perforated and non-perforated plates attached to the for-end and back-end of the VLFS. The effectiveness of this device in reducing the deformation and bending moment of the VLFS has been confirmed, and is compared with the results in cases without and with the submerged horizontal plates by the analysis in this paper.展开更多
An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For thi...An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For this new system, most of collision energy is absorbed through the displacement of floating platforms. In order to illustrate the validity of the system, a series of model tests were conducted at a scale of 1:40. The coupled motion characteristics of the floating mooring platforms were discussed under regular and irregular waves, and the influences of wave direction and other characteristics on dynamic response of the system were analyzed. The results show that the mooring system is safest at 0° of wave incident angle, whereas the most dangerous mooring state occurs at 90° of wave incident angle. Motion responses increase with the increase of wave height, but are not linearly related to changes in wave height.展开更多
基金Supported by National Natural Science Foundation of China(41001341)Natural Science Foundation of Guangdong Province(9152800001000007)+1 种基金Open Fund ofState Key Laboratory of Subtropical Building Science(2011KB12)Basic Scientific Research Expenses Project of Central Universities(2012ZM0082)~~
文摘[Objective] The plankton and macrobenthos samples in municipal polluted river were analyzed by different methods, so as to explore the method suitable for biological data analysis in heavy polluted area. [Method] Shannon-Wiener diversity index, cluster analysis of multivariate statistical analysis and MDS (Non-matric Multi- dimentional Scaling)analysis were used to analyze biological data of phytoplankton, zooplankton and Zoobenthos collected from the representative municipal polluted river in Pearl River Delta. The sediment samples were also collected to determine. Pb, Cd, Hg, Cr, As, Cu, Ni, Zn, as well as CODe, and NH3-N of porewater. Hakanson potential ecological risk index method was used to evaluate the ecological risk. [Re- suit] Shannon-Wiener diversity index analysis results can not effectively reflect the difference of pollution status of various stations in heavy polluted area; despite the presence of some problems, multivariate analysis method is superior to the Shannon-Wiener diversity index method in biological monitoring of heavy polluted river in the city. [Conclusion] The paper provided theoretical basis for biological data analysis in heavy polluted area.
基金the National Science Foundation for Creative Re-search Groups of China (Grant No.50921001) for supporting this work
文摘This paper is concerned with the hydroelastic problem of a very large pontoon-type floating structure(VLFS) edged with a pair of submerged horizontal plates, which is a combination of perforated and non-perforated plates attached to the for-end and back-end of the VLFS. For the hydroelastic analysis, the fluid is assumed to be ideal and its motion is irrotational so that a velocity potential exists. The VLFS is modeled as an elastic plate according to the classical thin plate theory. The fluid-structure interaction problem is separated into conventional hydrodynamics and structure dynamics by using modal expansion method in the frequency-domain. It involves, firstly, the deflection of the VLFS, which is expressed by a superposition of modal functions and corresponding modal amplitudes. Then the boundary element method is used to solve the integral equations of diffraction and radiation on the body surface for the velocity potential, whereas the vibration equation is solved by the Galerkin's method for modal amplitudes, and then the deflection is obtained by the sum of multiplying modal functions with modal amplitudes. This study examines the effects of the width and location of the non-perforated horizontal plates on the hydroelastic response of the VLFS, then the performance of perforated plates is investigated to reduce the motion near the fore-end of the VLFS. Considering the advantages and disadvantages of submerged plates without and with cylindrical holes, we propose a simple anti-motion device, which is a combination of a pair of perforated and non-perforated plates attached to the for-end and back-end of the VLFS. The effectiveness of this device in reducing the deformation and bending moment of the VLFS has been confirmed, and is compared with the results in cases without and with the submerged horizontal plates by the analysis in this paper.
基金the support of the National Natural Science Foundation of China (Grant No. 51309179)the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA051705)+2 种基金the International S&T Cooperation Program of China (Grant No. 2012DFA70490)the State Key Laboratory of Hydraulic Engineering Simulation and Safety (Tianjin University)the Tianjin Municipal Natural Science Foundation (Grant Nos. 14JCQNJC07000 and 13JCYBJC19100)
文摘An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For this new system, most of collision energy is absorbed through the displacement of floating platforms. In order to illustrate the validity of the system, a series of model tests were conducted at a scale of 1:40. The coupled motion characteristics of the floating mooring platforms were discussed under regular and irregular waves, and the influences of wave direction and other characteristics on dynamic response of the system were analyzed. The results show that the mooring system is safest at 0° of wave incident angle, whereas the most dangerous mooring state occurs at 90° of wave incident angle. Motion responses increase with the increase of wave height, but are not linearly related to changes in wave height.