A novel floating osmotic pump controlled release system (FOP) and traditional matrix sustained release tablets (MT) of dipyridamole (DIP) were characterized in terms of pharmacokinetics, drug release, and in vit...A novel floating osmotic pump controlled release system (FOP) and traditional matrix sustained release tablets (MT) of dipyridamole (DIP) were characterized in terms of pharmacokinetics, drug release, and in vitro-in vivo correlation. In vivo study was performed by a three-crossover study in six beagle dogs relative to the conventional tablet (CT). A HPLC method for the determination of DIP in the plasma was developed. Cumulative percent of absorption fraction was compared to that of in vitro cumulative release. Both FOP and MT displayed obvious extended release characteristic in vivo while FOP showed a better extended release behavior. The bioavailability of FOP was higher than that of MT and a zero-order release linear correlation of DIP between fraction absorbed in vivo and fraction dissolved in vitro was established for FOP while not for MT. The results indicated the existence of an absorption window in upper part of the GI track of DIP, which meant that floating system could be excellent for the drug delivery. In addition, the in vitro model was a good choice for depicting in vivo absorption and for optimization of the formulation of FOP if it is needed to be bio-equivalent to MT.展开更多
A numerical method for predicting fiber orientation is presented to explore the flow properties of turbulent fiber suspension flowing through a stock pump impeller. The Fokker-Planck equation is used to describe the d...A numerical method for predicting fiber orientation is presented to explore the flow properties of turbulent fiber suspension flowing through a stock pump impeller. The Fokker-Planck equation is used to describe the distribution of fiber orientation. The effect of flow-fiber coupling is considered by modifying the constitutive mode.The three-dimensional orientation distribution function is formulated and the corresponding equations are solved in terms of second-order and fourth-order orientation tensors. The evolution of fiber orientation, flow velocity and pressure, additional shear stress and normal stress difference are presented. The results show that the evolutions of fiber orientation are different along different streamlines. The velocity and its gradient are large in the concave wall region, while they are very small in the convex wall region. The additional shear stress and normal stress difference are large in the inlet and concave wall regions, and moderate in the mid-region, while they are almost zero in most downstream regions. The non-equilibrium fiber orientation distribution is dominant at the inlet and the concave wall regions. The flow will consume more energy to overcome the additional shearing losses due to fibers at the inlet and the concave wall regions. The change of flow rates has effect on the distribution of additional shear stress and normal stress difference. The flow structure in the inlet and concave wall regions is essential in the resultant rheological properties of the fiber suspension through the stock pump impeller, which will directly affect the flow efficiency of the fiber suspension through the impeller.展开更多
文摘A novel floating osmotic pump controlled release system (FOP) and traditional matrix sustained release tablets (MT) of dipyridamole (DIP) were characterized in terms of pharmacokinetics, drug release, and in vitro-in vivo correlation. In vivo study was performed by a three-crossover study in six beagle dogs relative to the conventional tablet (CT). A HPLC method for the determination of DIP in the plasma was developed. Cumulative percent of absorption fraction was compared to that of in vitro cumulative release. Both FOP and MT displayed obvious extended release characteristic in vivo while FOP showed a better extended release behavior. The bioavailability of FOP was higher than that of MT and a zero-order release linear correlation of DIP between fraction absorbed in vivo and fraction dissolved in vitro was established for FOP while not for MT. The results indicated the existence of an absorption window in upper part of the GI track of DIP, which meant that floating system could be excellent for the drug delivery. In addition, the in vitro model was a good choice for depicting in vivo absorption and for optimization of the formulation of FOP if it is needed to be bio-equivalent to MT.
基金Supported by the National Natural Science Foundation of China (51309118), the National Key Technology R&D Program of the Ministry of Science and Technology of China (2011BAF14B01), the Postdoctoral Science Foundation of China (2013M531282) and the Doctorate Program of Higher Education of China (20120101110121).
文摘A numerical method for predicting fiber orientation is presented to explore the flow properties of turbulent fiber suspension flowing through a stock pump impeller. The Fokker-Planck equation is used to describe the distribution of fiber orientation. The effect of flow-fiber coupling is considered by modifying the constitutive mode.The three-dimensional orientation distribution function is formulated and the corresponding equations are solved in terms of second-order and fourth-order orientation tensors. The evolution of fiber orientation, flow velocity and pressure, additional shear stress and normal stress difference are presented. The results show that the evolutions of fiber orientation are different along different streamlines. The velocity and its gradient are large in the concave wall region, while they are very small in the convex wall region. The additional shear stress and normal stress difference are large in the inlet and concave wall regions, and moderate in the mid-region, while they are almost zero in most downstream regions. The non-equilibrium fiber orientation distribution is dominant at the inlet and the concave wall regions. The flow will consume more energy to overcome the additional shearing losses due to fibers at the inlet and the concave wall regions. The change of flow rates has effect on the distribution of additional shear stress and normal stress difference. The flow structure in the inlet and concave wall regions is essential in the resultant rheological properties of the fiber suspension through the stock pump impeller, which will directly affect the flow efficiency of the fiber suspension through the impeller.