The transport mechanism and settlement characteristics of suspended sediments are analyzed in this article on the basis of measured data. Results indicate that the concentration and flux of suspended sediments decreas...The transport mechanism and settlement characteristics of suspended sediments are analyzed in this article on the basis of measured data. Results indicate that the concentration and flux of suspended sediments decrease sharply from Hangzhou Bay to the offshore area. Suspended sediment transport is mainly controlled by advection transport and gravitational circulation transport. The settling velocity of suspended sediments gradually decreases from Hangzhou Bay to the offshore area. The settlement of suspended sediments mainly takes place during the turning phase of the tidal currents.展开更多
The vertical fluxes and molar ratios of carbon, nitrogen and phosphorus of suspended particulate matter in the Yellow Sea were studied based on the analysis of suspended particulate matter, sediments and sinking parti...The vertical fluxes and molar ratios of carbon, nitrogen and phosphorus of suspended particulate matter in the Yellow Sea were studied based on the analysis of suspended particulate matter, sediments and sinking particles obtained by use of moored sediment traps. The POC:PON ratios indicate that most of the particulate organic matter in the Yellow Sea water column comes from marine life rather than the continent. The vertical fluxes of SPM, POC, PON and POP in the Yellow Sea are much higher than those in other seas over the world, and present a typical pattern in shallow epicontinental seas. The estimated residence time of the bioactive elements showed that the speed of the biogeochemical process of materials in the Yellow Sea is much shorter than that in the open ocean as there was high primary productivity in this region.展开更多
The variation of phosphorus (P) bioavailability in terms of water soluble P (WSP ), readily desorbable P (RDP), algal available P (AAP), and NaHCo3 extracting P (Olsen-P) in the re-suspended sediments was in...The variation of phosphorus (P) bioavailability in terms of water soluble P (WSP ), readily desorbable P (RDP), algal available P (AAP), and NaHCo3 extracting P (Olsen-P) in the re-suspended sediments was investigated in laboratory experiments, in which the waters and sediments were taken from campus canal. The results indicate that sediment re-suspension can promote the migration, of soluble reactive P (SRP) from overlying water to sediments. The contents of AAP and Olsen-P in re-suspended sediments reduced obviously, whereas the values of the sediments in the control increased slightly, compared with the initial state, indicating that the P bioavailability in the sediments could be rcduced evidently due to sediment re-suspension. The content and characteristics of iron-bound P (BD-P) significantly affect the formation of AAP. The formation of OlservP has close relationship with the contents of BD-P, almninium-botmd P (AI-P), and organic P (NaOH-nrP).展开更多
Knowledge of the equilibrium bed-concentration is vital to mathematic a l modeling of the river-bed deformation associated with suspended load but prev i ous investigations only dealt with the reference concentration ...Knowledge of the equilibrium bed-concentration is vital to mathematic a l modeling of the river-bed deformation associated with suspended load but prev i ous investigations only dealt with the reference concentration of uniform sedime nt because of difficulties in observation of the bed-concentration. This work i s a first attempt to develop a theoretical formula for the equilibrium bed-conce n tration of any fraction of nonuniform sediment defined at the bed-surface. The f ormula is based on a stochastic-mechanistic model for the exchange of nonunifor m sediment near the bed, and described as a function of incipient motion probabil ity, non-ceasing probability, pick-up probability, and the ratio of the averag e single-step continuous motion time to static time. Comparison of bed-concentra ti on calculated from the proposed formula with the measured data showed satisfacto ry agreement, indicating the present formula can be used for solving the differe ntial equation governing the motion of suspended load.展开更多
Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the ad...Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the adaptation to capacity could be fulfilled instantly in response to differing inflow discharges and sediment supplies,and thus if the calculation of morphological changes in rivers based on the assumed capacity status is fully justified.Here we present a numerical investigation on this issue.The distance required for sediment transport to adapt to capacity(i.e.,adaptation-to-capacity length) of both bed load and suspended sediment transport is computationally studied using a coupled shallow water hydrodynamic model,in line with varied inlet sediment concentrations.It is found that the adaptation-to-capacity length generally decreases as the Rouse number increases,irrespective of whether the inlet sediment concentration increases or reduces.For cases with vanishing inlet sediment concentration a unified relationship is found between the adaptation-to-capacity length and the Rouse number.Quantitatively,the adaptation-to-capacity length of bed load sediment is limited to tens of times of the flow depth,whilst that of suspended sediment increases substantially with decreasing Rouse number and can be up to hundreds of times of the flow depth.The present finding concurs that bed load sediment transport can adapt to capacity much more rapidly than suspended sediment transport,and it facilitates a quantitative criterion on which the applicability of bed load or suspended sediment transport capacity for natural rivers can be readily assessed.展开更多
Light transmission data collected from June to July 1987 and from February to March 1997 by the R/V Kexue 1 in the East China Sea were used to analyze its distribution characteristics and its relation to the sediment ...Light transmission data collected from June to July 1987 and from February to March 1997 by the R/V Kexue 1 in the East China Sea were used to analyze its distribution characteristics and its relation to the sediment transport in this sea. Some results obtained were: (1) The Taiwan Warm Current flowing northwards seemed to be a barrier preventing suspended matter discharged from the Changjiang River Estuary from continuously moving southeastward and causing the suspended matter to flow along a path near 123°30′E in summer and 123°00′E in winter. (2) Suspended matter in the area adjacent to the Changjiang River Estuary could not be transported southward along the coast in summer due to opposing offshore currents including the Taiwan Warm Current flowing northward and the Changjiang Diluted Water turning northeastward. (3) The thermocline and temperature front bar suspended matter from crossing through.展开更多
The distribution of the suspended sediment concentration (SSC) in the Bohai Sea, Yellow Sea and East China Sea (BYECS) is studied based on the observed turbidity data and model simulation results. The observed tur...The distribution of the suspended sediment concentration (SSC) in the Bohai Sea, Yellow Sea and East China Sea (BYECS) is studied based on the observed turbidity data and model simulation results. The observed turbidity results show that (i) the highest SSC is found in the coastal areas while in the outer shelf sea areas turbid water is much more difficult to observe, (ii) the surface layer SSC is much lower than the bottom layer SSC and (iii) the winter SSC is higher than the summer SSC. The Regional Ocean Modeling System (ROMS) is used to simulate the SSC distribution in the BYECS. A comparison between the modeled SSC and the observed SSC in the BYECS shows that the modeled SSC can reproduce the principal features of tlte SSC distribution in the BYECS. The dynamic mechanisms of the sediment erosion and transport processes are studied based on the modeled results. The horizontal distribution of the SSC in the BYECS is mainly determined by the current-wave induced bottom stress and the fine-grain sediment distribution. The current-induced bottom stress is much higher than the wave-induced bottom stress, which means the tidal currents play a more significant role in the sediment resuspension than the wind waves. The vertical mixing strength is studied based on the mixed layer depth and the turbulent kinetic energy distribution in the BYECS. The strong winter time vertical mixing, which is mainly caused by the strong wind stress and surface cooling, leads to high surface layer SSC in winter. High surface layer SSC in summer is restricted in the coastal areas.展开更多
Dissolved nutrient concentration in the Huanghe (Yellow) River at Lijin was monitored during a water-sediment regulation period and a subsequent rainstorm from 14 June to 19 July, 2005. This study provides detailed ...Dissolved nutrient concentration in the Huanghe (Yellow) River at Lijin was monitored during a water-sediment regulation period and a subsequent rainstorm from 14 June to 19 July, 2005. This study provides detailed information on nutrient concentrations in the Huanghe River during the water-sediment regulation and rainstorm periods, and is of significance for the downstream area of the Huanghe River and the Bohai Sea. The average concentrations of nitrate, nitrite and ammonia were 304.7 μmol/L, 0.19 μmol/L, and 1.10 μmol/L, respectively, while the average concentrations of dissolved inorganic phosphorus (DIP) and dissolved silicate (DSi) were 0.23 gmol/L and 122.9 ktmol/L, respectively. Nutrient concentrations during the water-sediment regulation period were mainly influenced by the dilution effect, floodplain effect and sediment resuspension while dilution and erosion effects were the main factors during the rainstorm. The fluxes of dissolved inorganic nitrogen (DIN), DIP and DSi during the water-sediment regulation and rainstorm periods accounted for 20.4%, 19.5%, 16.7% and 4.97%, 6.45%, 5.47% of the annual nutrient fluxes, respectively. Discharge was the main factor influencing the fluxes of nutrients during both the water- sediment regulation and the rainstorm periods.展开更多
A pool of dormant stages of planktonic organisms in saline lakes is a substantial component in the plankton communities;we need to take it into account to understand plankton dynamics.Hypersaline water bodies in Crime...A pool of dormant stages of planktonic organisms in saline lakes is a substantial component in the plankton communities;we need to take it into account to understand plankton dynamics.Hypersaline water bodies in Crimea,the largest peninsula in the Black Sea,constitute a very characteristic and peculiar habitat type in the region.We examined the presence of crustacean resting stages in sediments of dried up sites of the Crimean hypersaline lakes.Sediment samples were taken in 9 different lakes.Experiments performed on the hatching of these resting stages showed the presence of Moina salina(Cladocera),parthenogenetic Artemia and Artemia urmiana(Anostraca),Eucypris mareotica( inflata)(Ostracoda),and Cletocamptus retrogressus(Harpacticoida).Comparing the experimental results obtained with clean dried brine shrimp cysts and those kept in sediment samples,it was noted that clean cysts hatched much faster than those from sediments did.Some components in bottom sediments slow down and desynchronize hatching from resting eggs in different groups of crustaceans.The sediments of different lakes inhibited the nauplii output from Artemia and ostracod resting eggs to different degrees.More data are needed before we can discuss the reasons of this inhibition.The nonsynchronous output of active stages from the bottom resting ones may be an adaptation that allows crustacean species to exist in extreme and unpredictably changing environments,avoiding the risk that all may emerge at once under unsuitable conditions.展开更多
In this paper an attempt is made to recover sillimanite by flotation tree analysis process and conventional flotation process from non magnetic fraction of red sediments.The experimental results of both the processes ...In this paper an attempt is made to recover sillimanite by flotation tree analysis process and conventional flotation process from non magnetic fraction of red sediments.The experimental results of both the processes are presented.The data reveal that the deslimed sample contains 33.2%(by weight) total heavy minerals and out of which the sillimanite mineral content is 3.6%(by weight).It is observed that flotation tree analysis needs 10 cells to get five output products and where as conventional flotation process needs 15 cells to recover similar grade of five output products.Thus,flotation tree analysis is not only economic process but also efficient process(to say efficient process,the tree analysis product should be higher grade).展开更多
Based on the principle of conservative matter removal in estuary,a new method is proposed for estimating the ratio of sediment resuspension in estuaries with fine suspended sediments in the turbidity maximum zone(TMZ)...Based on the principle of conservative matter removal in estuary,a new method is proposed for estimating the ratio of sediment resuspension in estuaries with fine suspended sediments in the turbidity maximum zone(TMZ) of the Changjiang(Yangtze) estuary during 2005.Results show that there was a range of 18.7%±27.9% to 73.9%±22.5% per annum of total suspended particulate matter(SPM),with an average of 49.2%.Nearly half of the particulate matter in the TMZ originates from sediment resuspension.This indicates that sediment resuspension is one of the major mechanisms involved in formation of the TMZ.Compared with traditional method for calculating these ratios in the estuary,this new method evaluates the dynamic variation of SPM content carried by river runoff from the river mouth to the ocean.The new method produced more reliable results than the traditional one and could produce a better estimation of resuspension flux for particulate matter in estuaries.展开更多
The sediment resuspension mechanisms in Sungo Bay, a large-scale aquaculture area in north China, were investigated by analysing data collected during several periods from 2005 to 2006. Nortek 6M ADV current meter and...The sediment resuspension mechanisms in Sungo Bay, a large-scale aquaculture area in north China, were investigated by analysing data collected during several periods from 2005 to 2006. Nortek 6M ADV current meter and YSI6600 were used to collect the field data on current speed, current direction and water turbidities 1 m above the bottom. Based on the collected field data, it could be found that wind-waves and currents were the main driving force for sediment resuspension. The correlation between suspended sediment concentration (SSC) and turbidity (NTU) is SSC = 15.908 x In (NTU) + 7.0888 (n = 33, R2 = 0.7209). Taking the key factor (angle 0) into account, the combination effect between wave and current were expressed. Results showed that the combined shear stress (row) of wave stress (re) and current stress (rw) could be calculated by row = rc + 2√ rcrw sin θ + rw sin^2 θ. The critical shear stress for sediment resuspension was about 0.059 N/m^2. The correlation between suspended sediment concentration and critical shear stress could be expressed by rcw = 238.06 SSC + 25.215 (n = 25, R^2 = 0.7298).展开更多
Results are presented of the longitudinal and vertical profiling of salinity and suspended particulate matter(SPM) at the Muthupet estuary, India, during a one year period under widely varying freshwater flow conditio...Results are presented of the longitudinal and vertical profiling of salinity and suspended particulate matter(SPM) at the Muthupet estuary, India, during a one year period under widely varying freshwater flow conditions. Freshwater flow was available during post-monsoon and monsoon. An up-estuary shift in the location of estuarine turbidity maxima(ETM) was observed during the transition from post-monsoon to pre-monsoon and further it shifted downstream during the transition from pre-monsoon to monsoon, thereby exhibiting a pronounced seasonal cycle. The salinity intrusion was dependent on the freshwater discharge and was expressed as a power function of freshwater flow, explaining 97% of the variance. The formation of a salt plug in Muthupet estuary and its seasonal dynamics were observed, which is not an identified feature of any of the Indian estuaries studied so far. The geographical positions of salt plug and ETM core were more or less the same during their formation. The occurrence of two ETM during the LW of post-monsoon and the absence of ETM during monsoon explains the strong seasonal variation in the formation of ETM. The primary factor affecting the formation of ETM was identified as the freshwater flow over an annual cycle; the resuspension of sediments by tidal current affecting the formation on a flood/ebb cycle was secondary. The extent of shift of ETM was found to be an inverse logarithmic function of the freshwater discharge. The separation between ETM intrusion and salinity intrusion increased two fold with the increase in ETM intrusion.展开更多
Sediments in many rivers and lakes are subjected to resuspension due to a combination of hydrodynamics. However, the roles of contaminant-contained dissolved and particulate sediments during the resuspension release a...Sediments in many rivers and lakes are subjected to resuspension due to a combination of hydrodynamics. However, the roles of contaminant-contained dissolved and particulate sediments during the resuspension release are rarely studied. This study focuses on the release quantity of contaminants in both water phase and solid phase. Conservative tracer (NaC1) and reactive tracer (Phosphorus) were respectively added to cohesive fine-grained sediments and non-cohesive coarse-grained sediments. A range of typical shear stress was conducted to characterize the time-depended release of contaminants in a laboratory flume. When the sediment started to move, the concentration of contaminant in the overlying water increased with the bed shear stress, but the dissolved contaminants responded faster than the particulate ones. The observed contaminant release process can be divided into three main stages: the initial two hours fast mixing: the release contribution of pore water could reach up to 75%; the middle 4-6 h adsorption: the partitioning coefficient of contaminant between water phase and solid phase decreased over the time, and the adsorption of contaminates from resuspended sediment dominated the negative release; the last equilibrium stage: the desorption and adsorption reached equilibrium, and the reactive contaminant made an impact on the water quality in the solid phase. The existing formulas to evaluate the release flux are far from practice meaning as the sediment contaminants undergo a very complex release process.展开更多
Particle inertia effect plays a significant role in sediment dispersion which has not been fully elucidated.In this paper,the profound effect of particle inertia on the sediment dispersion was analyzed.The theoretical...Particle inertia effect plays a significant role in sediment dispersion which has not been fully elucidated.In this paper,the profound effect of particle inertia on the sediment dispersion was analyzed.The theoretical expression for the drift velocity based on the two-phase mixture theory in turbulent open channels is firstly introduced.The influence of particle inertia on sediment dispersion was investigated through three different aspects including vertical dispersion,motion,and flux properties based on the drift velocity.Results show that the dispersion of suspended sediment in turbulent open-channel flows is affected by three major processes including turbulence of water sediment mixtures,particle random motion,and collisions among particles,of which the contributions of particle turbulence and collisions to the sediment dispersion are remarkable for particles of high inertia.With respect to the vertical mean velocity and sediment flux,it shows that the predictive results agree well with the measurements when the term of particle inertia is considered.As a result,particle inertia considerably affects the behavior of suspended sediment.In particular,the influence of inertia must be accounted for in circumstances of flows laden with high-inertia particles.展开更多
Resuspension of bed materials absorbing pollutants potentially poses unpredictable challenges to water management in alluvial rivers and its mechanism of transport has not been widely recognized.In this study,a transp...Resuspension of bed materials absorbing pollutants potentially poses unpredictable challenges to water management in alluvial rivers and its mechanism of transport has not been widely recognized.In this study,a transport equation that defines the movement of pollutants adsorbed on the bed materials in the active bed layer is established,on the basis of mass conservation law and continuum theory.The transport equation is coupled into the 1-D mathematical model to numerically investigate water pollution process due to the scour of the bed sediment adsorbing pollutants.Comparisons with the situation in which the dynamics of the active bed layer is not considered indicate that the periodical evolution of the bed layer plays an innegligible role in the pollution process due to sediment re-suspension.Furthermore,comparisons of the results with available experimental observations are presented,and fairly good agreement is obtained.展开更多
Sediment-water interfaces are important interfaces for lakes,which are related to most environmental and ecological problems.Wind-induced waves cause secondary pollution via sediment resuspension.Since the coupling me...Sediment-water interfaces are important interfaces for lakes,which are related to most environmental and ecological problems.Wind-induced waves cause secondary pollution via sediment resuspension.Since the coupling mechanism of water,resuspended sediments,and phosphorus affects the release of phosphorus(P)near the interface,a coupled model was explored for two sediment types with different adsorption-desorption capabilities to examine sediment resuspension and P release.The relationships among wind speed,wave characteristics,sediment distribution and P concentration were obtained.For different sediments,the unit sediment desorption release is negatively correlated with wind speed.When sediments are resuspended under low or moderate wind speed,the P concentration in the overlying water increases abruptly,hampering diffusion.P release exhibits the characteristics of concentrated release in a small region and changes the water environment rapidly.展开更多
Tidally induced resuspension processes play an important role in the release of mercury (Hg) into the water column, which increases the risk of Hg exposure to estuarine eco-systems. In order to further understand the ...Tidally induced resuspension processes play an important role in the release of mercury (Hg) into the water column, which increases the risk of Hg exposure to estuarine eco-systems. In order to further understand the geochemical activities of Hg in the intertidal area, the temporal variations of dissolved Hg (Hg D ) and particulate Hg (Hg P ) in the water column during the course of a tidal cycle and its geochemical processes were studied in the southern intertidal zone of the Yangtze Estuary, China. The concentrations of Hg D and Hg P varied between 37-612 ng/L and 51-638 ng/L respectively during the tidal cycle. The increase of Hg D was distinguished at the early flood tide and late ebb tide when the water flow rates were higher. The Hg D concentrations were negatively correlated with Hg P (r = 0.523, p < 0.05) and positively correlated with dissolved organic carbon (DOC) (r = 0.605, p < 0.05) in the bottom water, indicating that the Hg D released from the sediments into the overlying water was associated with the simultaneously released colloidal material in the bottom water. The main pathways for the translocation of Hg from the sediments to the overlying water include the processes of desorption from resuspended particles, advection or diffusion from sediments, and the oxidation of resuspended sulfide. The results of principal components analysis (PCA) and Pearson correlation analysis showed that the combined effects of the total suspended substrate (TSS), DOC, pH and dissolved oxygen (DO) influenced the geochemical activities of Hg in the water column during the course of a tidal cycle.展开更多
文摘The transport mechanism and settlement characteristics of suspended sediments are analyzed in this article on the basis of measured data. Results indicate that the concentration and flux of suspended sediments decrease sharply from Hangzhou Bay to the offshore area. Suspended sediment transport is mainly controlled by advection transport and gravitational circulation transport. The settling velocity of suspended sediments gradually decreases from Hangzhou Bay to the offshore area. The settlement of suspended sediments mainly takes place during the turning phase of the tidal currents.
文摘The vertical fluxes and molar ratios of carbon, nitrogen and phosphorus of suspended particulate matter in the Yellow Sea were studied based on the analysis of suspended particulate matter, sediments and sinking particles obtained by use of moored sediment traps. The POC:PON ratios indicate that most of the particulate organic matter in the Yellow Sea water column comes from marine life rather than the continent. The vertical fluxes of SPM, POC, PON and POP in the Yellow Sea are much higher than those in other seas over the world, and present a typical pattern in shallow epicontinental seas. The estimated residence time of the bioactive elements showed that the speed of the biogeochemical process of materials in the Yellow Sea is much shorter than that in the open ocean as there was high primary productivity in this region.
基金National High Technology Research and Development Program(863) of China(No.2003AA601070)National Natural Science Foundation of China(No.50908154)
文摘The variation of phosphorus (P) bioavailability in terms of water soluble P (WSP ), readily desorbable P (RDP), algal available P (AAP), and NaHCo3 extracting P (Olsen-P) in the re-suspended sediments was investigated in laboratory experiments, in which the waters and sediments were taken from campus canal. The results indicate that sediment re-suspension can promote the migration, of soluble reactive P (SRP) from overlying water to sediments. The contents of AAP and Olsen-P in re-suspended sediments reduced obviously, whereas the values of the sediments in the control increased slightly, compared with the initial state, indicating that the P bioavailability in the sediments could be rcduced evidently due to sediment re-suspension. The content and characteristics of iron-bound P (BD-P) significantly affect the formation of AAP. The formation of OlservP has close relationship with the contents of BD-P, almninium-botmd P (AI-P), and organic P (NaOH-nrP).
文摘Knowledge of the equilibrium bed-concentration is vital to mathematic a l modeling of the river-bed deformation associated with suspended load but prev i ous investigations only dealt with the reference concentration of uniform sedime nt because of difficulties in observation of the bed-concentration. This work i s a first attempt to develop a theoretical formula for the equilibrium bed-conce n tration of any fraction of nonuniform sediment defined at the bed-surface. The f ormula is based on a stochastic-mechanistic model for the exchange of nonunifor m sediment near the bed, and described as a function of incipient motion probabil ity, non-ceasing probability, pick-up probability, and the ratio of the averag e single-step continuous motion time to static time. Comparison of bed-concentra ti on calculated from the proposed formula with the measured data showed satisfacto ry agreement, indicating the present formula can be used for solving the differe ntial equation governing the motion of suspended load.
基金funded by Natural Science Foundation of China (Grants Nos. 11172217, 10932012 and 10972164)
文摘Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the adaptation to capacity could be fulfilled instantly in response to differing inflow discharges and sediment supplies,and thus if the calculation of morphological changes in rivers based on the assumed capacity status is fully justified.Here we present a numerical investigation on this issue.The distance required for sediment transport to adapt to capacity(i.e.,adaptation-to-capacity length) of both bed load and suspended sediment transport is computationally studied using a coupled shallow water hydrodynamic model,in line with varied inlet sediment concentrations.It is found that the adaptation-to-capacity length generally decreases as the Rouse number increases,irrespective of whether the inlet sediment concentration increases or reduces.For cases with vanishing inlet sediment concentration a unified relationship is found between the adaptation-to-capacity length and the Rouse number.Quantitatively,the adaptation-to-capacity length of bed load sediment is limited to tens of times of the flow depth,whilst that of suspended sediment increases substantially with decreasing Rouse number and can be up to hundreds of times of the flow depth.The present finding concurs that bed load sediment transport can adapt to capacity much more rapidly than suspended sediment transport,and it facilitates a quantitative criterion on which the applicability of bed load or suspended sediment transport capacity for natural rivers can be readily assessed.
文摘Light transmission data collected from June to July 1987 and from February to March 1997 by the R/V Kexue 1 in the East China Sea were used to analyze its distribution characteristics and its relation to the sediment transport in this sea. Some results obtained were: (1) The Taiwan Warm Current flowing northwards seemed to be a barrier preventing suspended matter discharged from the Changjiang River Estuary from continuously moving southeastward and causing the suspended matter to flow along a path near 123°30′E in summer and 123°00′E in winter. (2) Suspended matter in the area adjacent to the Changjiang River Estuary could not be transported southward along the coast in summer due to opposing offshore currents including the Taiwan Warm Current flowing northward and the Changjiang Diluted Water turning northeastward. (3) The thermocline and temperature front bar suspended matter from crossing through.
基金supported by the China Scholarship Council and the National Basic Research Program of China(973 Program 2010CB428904 and 2005CB422300)
文摘The distribution of the suspended sediment concentration (SSC) in the Bohai Sea, Yellow Sea and East China Sea (BYECS) is studied based on the observed turbidity data and model simulation results. The observed turbidity results show that (i) the highest SSC is found in the coastal areas while in the outer shelf sea areas turbid water is much more difficult to observe, (ii) the surface layer SSC is much lower than the bottom layer SSC and (iii) the winter SSC is higher than the summer SSC. The Regional Ocean Modeling System (ROMS) is used to simulate the SSC distribution in the BYECS. A comparison between the modeled SSC and the observed SSC in the BYECS shows that the modeled SSC can reproduce the principal features of tlte SSC distribution in the BYECS. The dynamic mechanisms of the sediment erosion and transport processes are studied based on the modeled results. The horizontal distribution of the SSC in the BYECS is mainly determined by the current-wave induced bottom stress and the fine-grain sediment distribution. The current-induced bottom stress is much higher than the wave-induced bottom stress, which means the tidal currents play a more significant role in the sediment resuspension than the wind waves. The vertical mixing strength is studied based on the mixed layer depth and the turbulent kinetic energy distribution in the BYECS. The strong winter time vertical mixing, which is mainly caused by the strong wind stress and surface cooling, leads to high surface layer SSC in winter. High surface layer SSC in summer is restricted in the coastal areas.
基金Supported by the National Natural Science Foundation of China(No.40976044)the National Basic Research Program of China(973 Program)(No.2011CB403602)the Funds for Creative Research Groups ofChina(No.41221004)
文摘Dissolved nutrient concentration in the Huanghe (Yellow) River at Lijin was monitored during a water-sediment regulation period and a subsequent rainstorm from 14 June to 19 July, 2005. This study provides detailed information on nutrient concentrations in the Huanghe River during the water-sediment regulation and rainstorm periods, and is of significance for the downstream area of the Huanghe River and the Bohai Sea. The average concentrations of nitrate, nitrite and ammonia were 304.7 μmol/L, 0.19 μmol/L, and 1.10 μmol/L, respectively, while the average concentrations of dissolved inorganic phosphorus (DIP) and dissolved silicate (DSi) were 0.23 gmol/L and 122.9 ktmol/L, respectively. Nutrient concentrations during the water-sediment regulation period were mainly influenced by the dilution effect, floodplain effect and sediment resuspension while dilution and erosion effects were the main factors during the rainstorm. The fluxes of dissolved inorganic nitrogen (DIN), DIP and DSi during the water-sediment regulation and rainstorm periods accounted for 20.4%, 19.5%, 16.7% and 4.97%, 6.45%, 5.47% of the annual nutrient fluxes, respectively. Discharge was the main factor influencing the fluxes of nutrients during both the water- sediment regulation and the rainstorm periods.
文摘A pool of dormant stages of planktonic organisms in saline lakes is a substantial component in the plankton communities;we need to take it into account to understand plankton dynamics.Hypersaline water bodies in Crimea,the largest peninsula in the Black Sea,constitute a very characteristic and peculiar habitat type in the region.We examined the presence of crustacean resting stages in sediments of dried up sites of the Crimean hypersaline lakes.Sediment samples were taken in 9 different lakes.Experiments performed on the hatching of these resting stages showed the presence of Moina salina(Cladocera),parthenogenetic Artemia and Artemia urmiana(Anostraca),Eucypris mareotica( inflata)(Ostracoda),and Cletocamptus retrogressus(Harpacticoida).Comparing the experimental results obtained with clean dried brine shrimp cysts and those kept in sediment samples,it was noted that clean cysts hatched much faster than those from sediments did.Some components in bottom sediments slow down and desynchronize hatching from resting eggs in different groups of crustaceans.The sediments of different lakes inhibited the nauplii output from Artemia and ostracod resting eggs to different degrees.More data are needed before we can discuss the reasons of this inhibition.The nonsynchronous output of active stages from the bottom resting ones may be an adaptation that allows crustacean species to exist in extreme and unpredictably changing environments,avoiding the risk that all may emerge at once under unsuitable conditions.
文摘In this paper an attempt is made to recover sillimanite by flotation tree analysis process and conventional flotation process from non magnetic fraction of red sediments.The experimental results of both the processes are presented.The data reveal that the deslimed sample contains 33.2%(by weight) total heavy minerals and out of which the sillimanite mineral content is 3.6%(by weight).It is observed that flotation tree analysis needs 10 cells to get five output products and where as conventional flotation process needs 15 cells to recover similar grade of five output products.Thus,flotation tree analysis is not only economic process but also efficient process(to say efficient process,the tree analysis product should be higher grade).
基金Supported by National Natural Science Foundation of China for Creative Research Groups(No.41121064) and NSFC(No.41176138)the Program from Three Gorges Engineering Construction Committee of the State Council,China(No.SX2004-010)
文摘Based on the principle of conservative matter removal in estuary,a new method is proposed for estimating the ratio of sediment resuspension in estuaries with fine suspended sediments in the turbidity maximum zone(TMZ) of the Changjiang(Yangtze) estuary during 2005.Results show that there was a range of 18.7%±27.9% to 73.9%±22.5% per annum of total suspended particulate matter(SPM),with an average of 49.2%.Nearly half of the particulate matter in the TMZ originates from sediment resuspension.This indicates that sediment resuspension is one of the major mechanisms involved in formation of the TMZ.Compared with traditional method for calculating these ratios in the estuary,this new method evaluates the dynamic variation of SPM content carried by river runoff from the river mouth to the ocean.The new method produced more reliable results than the traditional one and could produce a better estimation of resuspension flux for particulate matter in estuaries.
基金Acknowledgments This work was supported by the National Basic Research Program of China (Grant No. 2011 CB409805), the National Science and Technology Planning Project of China (Grant No. 2011BAD13B05), the National Natural Science Foundation of China (Grant No. 41006074) and theSpecial Project of State Oceanic Administration (Grant No. DOMEP (MEA)-02). The authors were grateful to Mr. Zhang Huayue of Xunshan Fishery Group for his cooperation along this work and also to the very constructive comments by several reviewers.
文摘The sediment resuspension mechanisms in Sungo Bay, a large-scale aquaculture area in north China, were investigated by analysing data collected during several periods from 2005 to 2006. Nortek 6M ADV current meter and YSI6600 were used to collect the field data on current speed, current direction and water turbidities 1 m above the bottom. Based on the collected field data, it could be found that wind-waves and currents were the main driving force for sediment resuspension. The correlation between suspended sediment concentration (SSC) and turbidity (NTU) is SSC = 15.908 x In (NTU) + 7.0888 (n = 33, R2 = 0.7209). Taking the key factor (angle 0) into account, the combination effect between wave and current were expressed. Results showed that the combined shear stress (row) of wave stress (re) and current stress (rw) could be calculated by row = rc + 2√ rcrw sin θ + rw sin^2 θ. The critical shear stress for sediment resuspension was about 0.059 N/m^2. The correlation between suspended sediment concentration and critical shear stress could be expressed by rcw = 238.06 SSC + 25.215 (n = 25, R^2 = 0.7298).
基金the research project on the Management of Point Calimere wetland funded by Ministry of Environment and Forests,Government of India
文摘Results are presented of the longitudinal and vertical profiling of salinity and suspended particulate matter(SPM) at the Muthupet estuary, India, during a one year period under widely varying freshwater flow conditions. Freshwater flow was available during post-monsoon and monsoon. An up-estuary shift in the location of estuarine turbidity maxima(ETM) was observed during the transition from post-monsoon to pre-monsoon and further it shifted downstream during the transition from pre-monsoon to monsoon, thereby exhibiting a pronounced seasonal cycle. The salinity intrusion was dependent on the freshwater discharge and was expressed as a power function of freshwater flow, explaining 97% of the variance. The formation of a salt plug in Muthupet estuary and its seasonal dynamics were observed, which is not an identified feature of any of the Indian estuaries studied so far. The geographical positions of salt plug and ETM core were more or less the same during their formation. The occurrence of two ETM during the LW of post-monsoon and the absence of ETM during monsoon explains the strong seasonal variation in the formation of ETM. The primary factor affecting the formation of ETM was identified as the freshwater flow over an annual cycle; the resuspension of sediments by tidal current affecting the formation on a flood/ebb cycle was secondary. The extent of shift of ETM was found to be an inverse logarithmic function of the freshwater discharge. The separation between ETM intrusion and salinity intrusion increased two fold with the increase in ETM intrusion.
基金supported by the National Natural Science Foundation of China(Grant No.10972134)the State Key Program of National Natural Science of China(Grant No.11032007)
文摘Sediments in many rivers and lakes are subjected to resuspension due to a combination of hydrodynamics. However, the roles of contaminant-contained dissolved and particulate sediments during the resuspension release are rarely studied. This study focuses on the release quantity of contaminants in both water phase and solid phase. Conservative tracer (NaC1) and reactive tracer (Phosphorus) were respectively added to cohesive fine-grained sediments and non-cohesive coarse-grained sediments. A range of typical shear stress was conducted to characterize the time-depended release of contaminants in a laboratory flume. When the sediment started to move, the concentration of contaminant in the overlying water increased with the bed shear stress, but the dissolved contaminants responded faster than the particulate ones. The observed contaminant release process can be divided into three main stages: the initial two hours fast mixing: the release contribution of pore water could reach up to 75%; the middle 4-6 h adsorption: the partitioning coefficient of contaminant between water phase and solid phase decreased over the time, and the adsorption of contaminates from resuspended sediment dominated the negative release; the last equilibrium stage: the desorption and adsorption reached equilibrium, and the reactive contaminant made an impact on the water quality in the solid phase. The existing formulas to evaluate the release flux are far from practice meaning as the sediment contaminants undergo a very complex release process.
基金supported by the Natural National Science Foundation of China(Grant Nos.51379102,51039004)the National Key Technologies Research and Development Program of China during the 12th Five-Year Plan Period(Grant No.2012BAB05B01)
文摘Particle inertia effect plays a significant role in sediment dispersion which has not been fully elucidated.In this paper,the profound effect of particle inertia on the sediment dispersion was analyzed.The theoretical expression for the drift velocity based on the two-phase mixture theory in turbulent open channels is firstly introduced.The influence of particle inertia on sediment dispersion was investigated through three different aspects including vertical dispersion,motion,and flux properties based on the drift velocity.Results show that the dispersion of suspended sediment in turbulent open-channel flows is affected by three major processes including turbulence of water sediment mixtures,particle random motion,and collisions among particles,of which the contributions of particle turbulence and collisions to the sediment dispersion are remarkable for particles of high inertia.With respect to the vertical mean velocity and sediment flux,it shows that the predictive results agree well with the measurements when the term of particle inertia is considered.As a result,particle inertia considerably affects the behavior of suspended sediment.In particular,the influence of inertia must be accounted for in circumstances of flows laden with high-inertia particles.
基金supported by the National Natural Science Foundation of China(Grant No.51109064)the State Key Program of National Science Foundation of China(Grant No.51239003)the National Basic Research Program of China("973"Project)(Grant No.2011CB403303)
文摘Resuspension of bed materials absorbing pollutants potentially poses unpredictable challenges to water management in alluvial rivers and its mechanism of transport has not been widely recognized.In this study,a transport equation that defines the movement of pollutants adsorbed on the bed materials in the active bed layer is established,on the basis of mass conservation law and continuum theory.The transport equation is coupled into the 1-D mathematical model to numerically investigate water pollution process due to the scour of the bed sediment adsorbing pollutants.Comparisons with the situation in which the dynamics of the active bed layer is not considered indicate that the periodical evolution of the bed layer plays an innegligible role in the pollution process due to sediment re-suspension.Furthermore,comparisons of the results with available experimental observations are presented,and fairly good agreement is obtained.
基金supported by the Strategic Priority Research Program of the National Key R&D Program of China(Grant Nos.201BYf,CJ505500,and 201BYFCI505504)the National Natural Science Foundation of China(NSFC)(Grant Nos.11802313,and 12032005).
文摘Sediment-water interfaces are important interfaces for lakes,which are related to most environmental and ecological problems.Wind-induced waves cause secondary pollution via sediment resuspension.Since the coupling mechanism of water,resuspended sediments,and phosphorus affects the release of phosphorus(P)near the interface,a coupled model was explored for two sediment types with different adsorption-desorption capabilities to examine sediment resuspension and P release.The relationships among wind speed,wave characteristics,sediment distribution and P concentration were obtained.For different sediments,the unit sediment desorption release is negatively correlated with wind speed.When sediments are resuspended under low or moderate wind speed,the P concentration in the overlying water increases abruptly,hampering diffusion.P release exhibits the characteristics of concentrated release in a small region and changes the water environment rapidly.
基金supported by the National Natural Science Foundation of China (40701164, 40971259)the National Key Water Special Project of China (2009ZX07317-006)the Program of Shanghai Subject Chief Scientist (10XD1401600)
文摘Tidally induced resuspension processes play an important role in the release of mercury (Hg) into the water column, which increases the risk of Hg exposure to estuarine eco-systems. In order to further understand the geochemical activities of Hg in the intertidal area, the temporal variations of dissolved Hg (Hg D ) and particulate Hg (Hg P ) in the water column during the course of a tidal cycle and its geochemical processes were studied in the southern intertidal zone of the Yangtze Estuary, China. The concentrations of Hg D and Hg P varied between 37-612 ng/L and 51-638 ng/L respectively during the tidal cycle. The increase of Hg D was distinguished at the early flood tide and late ebb tide when the water flow rates were higher. The Hg D concentrations were negatively correlated with Hg P (r = 0.523, p < 0.05) and positively correlated with dissolved organic carbon (DOC) (r = 0.605, p < 0.05) in the bottom water, indicating that the Hg D released from the sediments into the overlying water was associated with the simultaneously released colloidal material in the bottom water. The main pathways for the translocation of Hg from the sediments to the overlying water include the processes of desorption from resuspended particles, advection or diffusion from sediments, and the oxidation of resuspended sulfide. The results of principal components analysis (PCA) and Pearson correlation analysis showed that the combined effects of the total suspended substrate (TSS), DOC, pH and dissolved oxygen (DO) influenced the geochemical activities of Hg in the water column during the course of a tidal cycle.