A novel hydroxamic acid,N-hydroxy-9,10-epoxy group-octadecanamide(N-OH-9,10-O-ODA),was synthesised by modifying the structure of oleic acid.The carboxyl group of oleic acid was converted into an N-hydroxy amide group,...A novel hydroxamic acid,N-hydroxy-9,10-epoxy group-octadecanamide(N-OH-9,10-O-ODA),was synthesised by modifying the structure of oleic acid.The carboxyl group of oleic acid was converted into an N-hydroxy amide group,and an epoxy group was introduced into its structure.N-OH-9,10-O-ODA was used as a novel collector in the flotation separation of spodumene from one of its associated gangue minerals,specifically albite.N-OH-9,10-O-ODA exhibits remarkable selectivity,with a stronger affinity for collecting spodumene particles compared to albite particles.Zeta potential measurements and X-ray photoelectron spectroscopic analysis reveal that the adsorption quantity of N-OH-9,10-O-ODA on spodumene surface is comparable to that on albite surface.First-principles calculations demonstrate the diverse adsorption configurations of N-OH-9,10-O-ODA on surfaces of spodumene and albite,leading to its distinct collecting abilities for spodumene and albite particles.展开更多
The flotabilities of chalcopyrite and galena with sodium humate(HA) and ammonium persulfate(APS) as the depressant were studied by flotation test, adsorption measurement and infrared spectroscopic analysis. Single...The flotabilities of chalcopyrite and galena with sodium humate(HA) and ammonium persulfate(APS) as the depressant were studied by flotation test, adsorption measurement and infrared spectroscopic analysis. Single mineral flotation test shows that the slurry oxidation environment and the proper oxidation of galena surface are prerequisites for the depression of galena by sodium humate. The closed-circuit flotation test of copper/lead bulk concentrate shows that the grade and recovery of Cu reach 30.47% and 89.16% respectively and those of Pb reach 2.06% and1.58% respectively in copper concentrate, and the grade and recovery of Pb reach 50.34% and 98.42% and those of Cu reach 1.45% and 10.84% respectively in lead concentrate with HA and APS. The selective depression effect of HA and APS is more obvious than that of potassium dichromate. The results of FTIR analysis and adsorption measurements indicate that the adsorption of sodium humate on the fresh surface of galena is negligible, while after oxidation, sodium humate can be chemically adsorbed on the surface of galena. According to the theory of solubility product, the sodium humate can display the oxidation product PbSO_4, after then, adsorb on the surface of lead chemically to produce inhibitory effect. Thus, it can be seen that the combination of HA and APS is an efficient non-toxic reagent to achieve cleaning separation copper/lead bulk concentrate by flotation. The combination of HA and APS is an efficient non-toxic reagent to achieve cleaning for copper/lead bulk concentrate by flotation.展开更多
Effects of size distribution (particle size and content of fine fraction (<10μm)) on scheelite flotation were studied using flotation tests and theoretical calculations. The results show that particle size influen...Effects of size distribution (particle size and content of fine fraction (<10μm)) on scheelite flotation were studied using flotation tests and theoretical calculations. The results show that particle size influences the scheelite recovery and the performance of combined reagents. The scheelite recovery is lowered by adding fine particles (<10μm) into the pulp containing coarse particles. Extended DLVO (EDLVO) theory confirms that the fine fractions (<10μm) could interface with the coarse fractions. The interaction energy and fluid forces are relative to the particle size, which might explain why the fine fractions influence the scheelite flotation. The highest recovery of scheelite using combined reagents as collector and optimum ratio of combined reagents were determined by scheelite particle size and reagent performance. However, the optimum adding order was only determined by reagent performance, which has nothing to do with particle size.展开更多
A novel synthesized reagent, O,O-bis(2,3-dihydroxypropyl) dithiophosphate (DHDTP), was investigated as depressant on the depression of chalcopyrite and galena, when ammonium dibutyl dithiophosphate (DDTP) was us...A novel synthesized reagent, O,O-bis(2,3-dihydroxypropyl) dithiophosphate (DHDTP), was investigated as depressant on the depression of chalcopyrite and galena, when ammonium dibutyl dithiophosphate (DDTP) was used as the collector in flotation tests. Zeta potential and adsorption measurement were performed to study the interaction between depressant and minerals. The flotation tests of two minerals show that DHDTP has slight depression on chalcopyrite in the whole pH range and strong depression on galena in the pH range of 6-10. When DHDTP dosage is increased, the recovery of galena decreases rapidly, while that of the chalcopyrite decreases slightly. The satisfied separation results of artificially mixed samples are that the copper grade and recovery rates of concentrate are 24.08% and 81%, respectively, when the pH is 6 with 278 mg/L DHDTP. Zeta potential and adsorption measurements show that DHDTP has more strongly adsorotion capacity to galena than chalcoovrite.展开更多
The depression of pyrite in marmatite flotation by sodium glycerine-xanthate (SGX) was investigated through microflotation, zeta potential and adsorption measurements. The flotation tests of mineral show that in the...The depression of pyrite in marmatite flotation by sodium glycerine-xanthate (SGX) was investigated through microflotation, zeta potential and adsorption measurements. The flotation tests of mineral show that in the presence of SGX, marmatite can be activated by Cu^2+ and shows good flotability, while pyrite cannot be activated and therefore shows poor flotability. At the pH value range from 4 to 11, the flotation selectivity between marmatite and pyrite is obvious when the SGX concentration is below 50 mg/L. The depression mechanism of SGX on sulfide minerals is discussed based on zeta potential and adsorption isotherm. Zeta potential measurement demonstrates that in the presence of Cu^2+, SGX can strongly adsorb on the surface of pyrite, while it cannot adsorb on the surface of marmatite. The results of adsorption isotherms show that the adsorption density of SGX on pyrite is greater.展开更多
The effect of sodium hexametaphosphate(SHMP) on the separation of serpentine from pyrite and its mechanism were studied systematically through flotation tests,sedimentation tests,surface dissolution,ζ potential tes...The effect of sodium hexametaphosphate(SHMP) on the separation of serpentine from pyrite and its mechanism were studied systematically through flotation tests,sedimentation tests,surface dissolution,ζ potential tests,adsorption measurements,and infrared spectroscopic analyses.The results show that the SHMP could significantly reduce the adverse effect of serpentine on the flotation of pyrite and make the mixed sample of pyrite and serpentine more disperse in the alkaline condition,thus improve the adsorption of xanthate on pyrite.The action mechanism of the SHMP is that it lowers the pH value at the isoelectric point of serpentine and enhances the negative charge through the dissolution of magnesium from the surface of serpentine and adsorbing on the surface of serpentine.It changes the total interaction energy between serpentine and pyrite from gravitational potential energy to repulse potential energy,according to the calculation of the EDLVO theory.展开更多
[Objective] The aim was to investigate different effects of two pH-regulating acids on the root morphology and other physiological growth of Lactuca sativa L.in floating plug transplant system.[Method] HNO3 and H2SO4 ...[Objective] The aim was to investigate different effects of two pH-regulating acids on the root morphology and other physiological growth of Lactuca sativa L.in floating plug transplant system.[Method] HNO3 and H2SO4 were used to adjust pH condition of various nutrient concentrations in lettuce floating transplant system,the effect of two acid treatments on root traits of lettuce were investigated.[Result] These two acids made different effects on root system under a series of nutrient gradients.Under HNO3 treatment,the fresh weight of shoot and root were increased with growth of nutrient concentration;root preformed best when EC was 1.0 μs/cm.Under H2SO4 treatment,when EC was 0.8 μs/cm,the total root length and root surface area,projected area,root volume of lettuce were 344.8 cm,40.9 cm2,13.0 cm2,0.4 m3,respectively,which were significantly higher than those in HNO3 treatment.Compared the influences of acid treatments under same nutrient concentration,the result showed that H2SO4 treatment increased root/shoot ratio and all other root morphological characteristics;however,HNO3 treatment promoted the growth of shoot and lateral root,increased transplanting efficiency and facilitated realizing high yield after transplanted into open-field.[Conclusion] This study will provide theoretical reference for improving plug transplant technology of lettuce.展开更多
Sodium 2,3-dihydroxypropyl dithiocarbonate(SGX), which contains —OH and —CSS— in the molecule, was used to explore selective depression of galena from chalcopyrite in the flotation tests with ammonium dibutyl dit...Sodium 2,3-dihydroxypropyl dithiocarbonate(SGX), which contains —OH and —CSS— in the molecule, was used to explore selective depression of galena from chalcopyrite in the flotation tests with ammonium dibutyl dithiophosphate(DDTP), and zeta potential and adsorption measurements were performed to study the interaction between SGX and minerals. The flotation tests of single minerals show that SGX has slight activation on chalcopyrite and strong depression on galena in the whole p H range. With SGX dosage increasing, the recovery of galena decreases rapidly, while that of chalcopyrite increases slightly. At p H=6, the copper grade and recovery of concentrate are 29.52% and 82.15% respectively when mixture of two minerals is tested. Zeta potential and adsorption measurements indicate that SGX has strong adsorption on galena and slight adsorption on chalcopyrite.展开更多
The flotation behavior and adsorption mechanism of novel(1-hydroxy-2-methyl-2-octenyl) phosphonic acid(HEPA) to cassiterite were investigated by micro-flotation tests, zeta potential measurements, FTIR determinati...The flotation behavior and adsorption mechanism of novel(1-hydroxy-2-methyl-2-octenyl) phosphonic acid(HEPA) to cassiterite were investigated by micro-flotation tests, zeta potential measurements, FTIR determination and density functional theory(DFT) calculation. The flotation results demonstrated that HEPA exhibited superior collecting performance compared with styrene phosphonic acid(SPA). The cassiterite recovery maintained above 90% over a wide pH range of 2-9 with 50 mg/L HEPA. The results of zeta potential measurement and FTIR detection indicated that the adsorption of HEPA onto cassiterite was mainly attributed to the chemisorption between HEPA monoanions and Sn species on mineral surfaces. The DFT calculation results demonstrated that HEPA monoanions owned higher HOMO energy and exhibited a better affinity to cassiterite than SPA, which provided very clear evidence for the stronger collecting power of HEPA presented in floatation test and zeta potential measurement.展开更多
In order to learn the ways and possible utilization mechanisms of dissolved inorganic carbon (DIC) in marine phytoplankton species under carbon-replete or -limited conditions, the activity of extracellular carbonic an...In order to learn the ways and possible utilization mechanisms of dissolved inorganic carbon (DIC) in marine phytoplankton species under carbon-replete or -limited conditions, the activity of extracellular carbonic anhydrase (CA) was assayed in different pH, CO 2 and DIC concentrations. Extracellular CA in Amphidinium carterae and Prorocentrum minimum was detected under carbon-replete conditions, while in Melosira sp., Phaeodactylum tricornutum, Skeletonema costatum, Thalassiosira rotula, Emiliania huxleyi and Pleurochrysis carterae, CA activity was assayed under conditions of carbon limitation. No CA activity was found even under carbon-limited conditions in Chaetoceros compressus, Glenodinium foliaceum, Coccolithus pelagicus, Gephrocapsa oceanica and Heterosigma akashiwo. In species without extracellular CA activity, the direct HCO - 3 uptake was investigated using a pH drift technique and the anion exchange inhibitor 4′4′-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS) in a closed system. The result showed that direct HCO - 3 transport might occur by an anion exchange mechanism in species Coc. pelagicus and G. oceanica. Of the 13 species investigated, only H. akashiwo did not have the potential for direct uptake or extracellular CA-catalyzed HCO - 3 utilization.展开更多
Abscisic acid (ABA) plays an important role in plant growth and developmental processes. Although some ABA signal molecules, such as cADPR, Ca2+, etc., have been reported, there. was no evidence proving the involvemen...Abscisic acid (ABA) plays an important role in plant growth and developmental processes. Although some ABA signal molecules, such as cADPR, Ca2+, etc., have been reported, there. was no evidence proving the involvement of cAMP in A-B-A, signal transduction. In this present study, the constructed gene ( rd29A-GUS) was transformed into Nicotiana tabacum, and calli was induced from the transgenic plant. The suspension cells obtained from the callus grew well and uniformly. Treatment of the suspension cells with ABA led to an increase in GUS activity, indicating that these transgenic suspension cells are useful for the study of ABA signaling. Addition of nicotinamide (cADPR inhibitor) or U-73122 (phospholiphase C inhibitor) could only partially inhibit the increase of GUS activity elicited by ABA. The inhibitory effect of nicotinamide was enhanced by application of K252a (inhibitor of protein kinase). Treatment of the suspension cells with 8-Br-cAMP, a membrane-permeable analogue of cAMP, could partially replace the effect of ABA. Furthermore, intracellular addition of IBMX (phosphodiesterase inhibitor) mimicked die effect of exogenous cAMP on the deduction of expression of rd29A promoter. These results suggested that cAMP was an important messenger in ABA signal transduction in tobacco suspension cell.展开更多
alkoxy-propylamines, C12H25O(CH2)3NH2, C14H29O(CH2)3NH2, C16H33O(CH2)3NH2, C18H37O-(CH2)3NH2 were synthesized from aliphatic alcohol and acrylonitrile. The flotation tests of kaolinite, pyrophyllite and illite...alkoxy-propylamines, C12H25O(CH2)3NH2, C14H29O(CH2)3NH2, C16H33O(CH2)3NH2, C18H37O-(CH2)3NH2 were synthesized from aliphatic alcohol and acrylonitrile. The flotation tests of kaolinite, pyrophyllite and illite were conducted. The flotation mechanisms were explained in view of the structures of reagents and aluminium silicate minerals, zeta potential and Fourier transform infrared spectrum measurements. The results show that the synthesized r-alkoxy-propylamines are more effective than dodecyl amine for flotation of kaolinite, pyrophyllite and illite. For flotation kaolinite and illite, the collecting ability is in the order of C18H37O(CH2)3NH2>C16H33O-(CH2)3NH2>C14H29O(CH2)3NH2>C12H25O(CH2)3NH2, but the r-alkoxy-propylamines types of collectors have almost the same collecting ability on pyrophyllite, which demonstrating that γ-alkoxy-propylamines are new selective collectors for reverse floatation to remove aluminium silicate minerals from bauxite.展开更多
The effect of octanol in cassiterite flotation using benzohydroxamic acid (BHA) as a collector was investigated. Theadsorption mechanism of octanol and BHA on the surface of cassiterite was analyzed by adsorption expe...The effect of octanol in cassiterite flotation using benzohydroxamic acid (BHA) as a collector was investigated. Theadsorption mechanism of octanol and BHA on the surface of cassiterite was analyzed by adsorption experiments and infrared spectraanalysis. Micro-flotation results indicated that single octanol exhibited almost no collecting power to cassiterite over a wide pHrange. However, as an auxiliary collector, octanol could markedly decrease the consumption of collector BHA and keep the recoveryof cassiterite in high level. The results of adsorption experiments and infrared spectra demonstrated that single octanol was notadsorbed on the surface of cassiterite. It formed adsorption connected with BHA on the surface of cassiterite, and enhanced thehydrophobicity of cassiterite. Octanol promoted the adsorption amount of BHA on the cassiterite surface, and decreased theconsumption of BHA.展开更多
Flotation is often employed to separate valuable natural minerals and gangue minerals.However,few studies have been conducted on artificial mineral flotation.Anosovite,the primary mineral in titanium slag,is a typical...Flotation is often employed to separate valuable natural minerals and gangue minerals.However,few studies have been conducted on artificial mineral flotation.Anosovite,the primary mineral in titanium slag,is a typical artificial mineral that can be enriched by flotation.In the present work,flotation behavior and adsorption mechanism of anosovite in salicylhydroxamic acid(SHA)solution were studied.The influence of pH and SHA dosage on anosovite flotability was investigated.Micro-flotation test results show that a pH range of 7–8.5 is available for SHA to collect anosovite.A maximum recovery of 93.26%can be obtained with SHA dosage of only 4×10.5 mol/L.In addition,TOC,zeta potential,FTIR,SEM-EDS,and XPS analyses were used to study the adsorption mechanism.Results demonstrated that SHA adsorption is governed by chemisorption.XPS studies further suggested that chemical adsorption occurred at the Ti sites on the anosovite surface.展开更多
In order to improve the recovery of tungsten ores containing tin minerals,anisic hydroxamic acid(p-methoxy benzohydroxanic acid,PMOB)was synthesized and introduced as novel collector in the flotation of scheelite,wolf...In order to improve the recovery of tungsten ores containing tin minerals,anisic hydroxamic acid(p-methoxy benzohydroxanic acid,PMOB)was synthesized and introduced as novel collector in the flotation of scheelite,wolframite and cassiterite.The flotation performance and adsorption mechanism were investigated by micro/batch flotation,zeta potential measurements and density functional theory(DFT).The micro flotation results showed that the recoveries of scheelite,wolframite and cassiterite using PMOB as collector are 97.45%,95.77% and 90.08%,respectively,and the corresponding recoveries are 91.00%,84.30% and 84.67% for benzohydroxamic acid(BHA).The batch flotation results revealed that the collector dosage could be reduced by about 45% for PMOB compared with BHA,in the case of similar flotation indicators.Zeta potential measurements indicated that PMOB could be adsorbed on the mineral surfaces by chemisorption.Moreover,density functional theory(DFT)calculation results showed that the substituent group—OCH_(3)endues PMOB stronger electron donation ability and hydrophobicity compared with benzohydroxamic acid(BHA),pmethyl benzohydroxamic acid(PMB)and p-hydroxyl benzohydroxamic acid(PHB).展开更多
基金financial support from the National Natural Science Foundation of China(Nos.91962223,52104287,U2067201)Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources and Open Foundation of State Key Laboratory of Mineral Processing,China(No.BGRIMM-KJSKL-2022-14)。
文摘A novel hydroxamic acid,N-hydroxy-9,10-epoxy group-octadecanamide(N-OH-9,10-O-ODA),was synthesised by modifying the structure of oleic acid.The carboxyl group of oleic acid was converted into an N-hydroxy amide group,and an epoxy group was introduced into its structure.N-OH-9,10-O-ODA was used as a novel collector in the flotation separation of spodumene from one of its associated gangue minerals,specifically albite.N-OH-9,10-O-ODA exhibits remarkable selectivity,with a stronger affinity for collecting spodumene particles compared to albite particles.Zeta potential measurements and X-ray photoelectron spectroscopic analysis reveal that the adsorption quantity of N-OH-9,10-O-ODA on spodumene surface is comparable to that on albite surface.First-principles calculations demonstrate the diverse adsorption configurations of N-OH-9,10-O-ODA on surfaces of spodumene and albite,leading to its distinct collecting abilities for spodumene and albite particles.
基金Project(51274255)supported by the National Natural Science Foundation of ChinaProject supported by the Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China
文摘The flotabilities of chalcopyrite and galena with sodium humate(HA) and ammonium persulfate(APS) as the depressant were studied by flotation test, adsorption measurement and infrared spectroscopic analysis. Single mineral flotation test shows that the slurry oxidation environment and the proper oxidation of galena surface are prerequisites for the depression of galena by sodium humate. The closed-circuit flotation test of copper/lead bulk concentrate shows that the grade and recovery of Cu reach 30.47% and 89.16% respectively and those of Pb reach 2.06% and1.58% respectively in copper concentrate, and the grade and recovery of Pb reach 50.34% and 98.42% and those of Cu reach 1.45% and 10.84% respectively in lead concentrate with HA and APS. The selective depression effect of HA and APS is more obvious than that of potassium dichromate. The results of FTIR analysis and adsorption measurements indicate that the adsorption of sodium humate on the fresh surface of galena is negligible, while after oxidation, sodium humate can be chemically adsorbed on the surface of galena. According to the theory of solubility product, the sodium humate can display the oxidation product PbSO_4, after then, adsorb on the surface of lead chemically to produce inhibitory effect. Thus, it can be seen that the combination of HA and APS is an efficient non-toxic reagent to achieve cleaning separation copper/lead bulk concentrate by flotation. The combination of HA and APS is an efficient non-toxic reagent to achieve cleaning for copper/lead bulk concentrate by flotation.
基金Project(51074037)supported by the National Natural Science Foundation of China
文摘Effects of size distribution (particle size and content of fine fraction (<10μm)) on scheelite flotation were studied using flotation tests and theoretical calculations. The results show that particle size influences the scheelite recovery and the performance of combined reagents. The scheelite recovery is lowered by adding fine particles (<10μm) into the pulp containing coarse particles. Extended DLVO (EDLVO) theory confirms that the fine fractions (<10μm) could interface with the coarse fractions. The interaction energy and fluid forces are relative to the particle size, which might explain why the fine fractions influence the scheelite flotation. The highest recovery of scheelite using combined reagents as collector and optimum ratio of combined reagents were determined by scheelite particle size and reagent performance. However, the optimum adding order was only determined by reagent performance, which has nothing to do with particle size.
基金Project(2008BAB34B01)supported by the National Key Technology R&D Program of China
文摘A novel synthesized reagent, O,O-bis(2,3-dihydroxypropyl) dithiophosphate (DHDTP), was investigated as depressant on the depression of chalcopyrite and galena, when ammonium dibutyl dithiophosphate (DDTP) was used as the collector in flotation tests. Zeta potential and adsorption measurement were performed to study the interaction between depressant and minerals. The flotation tests of two minerals show that DHDTP has slight depression on chalcopyrite in the whole pH range and strong depression on galena in the pH range of 6-10. When DHDTP dosage is increased, the recovery of galena decreases rapidly, while that of the chalcopyrite decreases slightly. The satisfied separation results of artificially mixed samples are that the copper grade and recovery rates of concentrate are 24.08% and 81%, respectively, when the pH is 6 with 278 mg/L DHDTP. Zeta potential and adsorption measurements show that DHDTP has more strongly adsorotion capacity to galena than chalcoovrite.
基金Project (50774094) supported by the National Natural Science Foundation of China
文摘The depression of pyrite in marmatite flotation by sodium glycerine-xanthate (SGX) was investigated through microflotation, zeta potential and adsorption measurements. The flotation tests of mineral show that in the presence of SGX, marmatite can be activated by Cu^2+ and shows good flotability, while pyrite cannot be activated and therefore shows poor flotability. At the pH value range from 4 to 11, the flotation selectivity between marmatite and pyrite is obvious when the SGX concentration is below 50 mg/L. The depression mechanism of SGX on sulfide minerals is discussed based on zeta potential and adsorption isotherm. Zeta potential measurement demonstrates that in the presence of Cu^2+, SGX can strongly adsorb on the surface of pyrite, while it cannot adsorb on the surface of marmatite. The results of adsorption isotherms show that the adsorption density of SGX on pyrite is greater.
基金Project(2007CB613602)supported by the National Basic Research Program of China
文摘The effect of sodium hexametaphosphate(SHMP) on the separation of serpentine from pyrite and its mechanism were studied systematically through flotation tests,sedimentation tests,surface dissolution,ζ potential tests,adsorption measurements,and infrared spectroscopic analyses.The results show that the SHMP could significantly reduce the adverse effect of serpentine on the flotation of pyrite and make the mixed sample of pyrite and serpentine more disperse in the alkaline condition,thus improve the adsorption of xanthate on pyrite.The action mechanism of the SHMP is that it lowers the pH value at the isoelectric point of serpentine and enhances the negative charge through the dissolution of magnesium from the surface of serpentine and adsorbing on the surface of serpentine.It changes the total interaction energy between serpentine and pyrite from gravitational potential energy to repulse potential energy,according to the calculation of the EDLVO theory.
基金Supported by Special Fund for Guangdong Modern Agriculture Industrial System Construction (Guangdong Agriculture 2009-380 )Key Agriculture Project of Guangdong Science and Technology Department (2009B020202003 )+1 种基金Key Agriculture Project of Guangdong Science and Technology Department (2009B020304002)Agriculture Brainstorm Project of Panyu District Guangzhou,Guangdong Province (2010-Z-82-1)~~
文摘[Objective] The aim was to investigate different effects of two pH-regulating acids on the root morphology and other physiological growth of Lactuca sativa L.in floating plug transplant system.[Method] HNO3 and H2SO4 were used to adjust pH condition of various nutrient concentrations in lettuce floating transplant system,the effect of two acid treatments on root traits of lettuce were investigated.[Result] These two acids made different effects on root system under a series of nutrient gradients.Under HNO3 treatment,the fresh weight of shoot and root were increased with growth of nutrient concentration;root preformed best when EC was 1.0 μs/cm.Under H2SO4 treatment,when EC was 0.8 μs/cm,the total root length and root surface area,projected area,root volume of lettuce were 344.8 cm,40.9 cm2,13.0 cm2,0.4 m3,respectively,which were significantly higher than those in HNO3 treatment.Compared the influences of acid treatments under same nutrient concentration,the result showed that H2SO4 treatment increased root/shoot ratio and all other root morphological characteristics;however,HNO3 treatment promoted the growth of shoot and lateral root,increased transplanting efficiency and facilitated realizing high yield after transplanted into open-field.[Conclusion] This study will provide theoretical reference for improving plug transplant technology of lettuce.
基金Project(2012BAB01B03)supported by National Key Technologies R&D Program of China
文摘Sodium 2,3-dihydroxypropyl dithiocarbonate(SGX), which contains —OH and —CSS— in the molecule, was used to explore selective depression of galena from chalcopyrite in the flotation tests with ammonium dibutyl dithiophosphate(DDTP), and zeta potential and adsorption measurements were performed to study the interaction between SGX and minerals. The flotation tests of single minerals show that SGX has slight activation on chalcopyrite and strong depression on galena in the whole p H range. With SGX dosage increasing, the recovery of galena decreases rapidly, while that of chalcopyrite increases slightly. At p H=6, the copper grade and recovery of concentrate are 29.52% and 82.15% respectively when mixture of two minerals is tested. Zeta potential and adsorption measurements indicate that SGX has strong adsorption on galena and slight adsorption on chalcopyrite.
基金Project(2013AA064102)supported by the 12th Five-year Plan of National Scientific and Technological Program of China
文摘The flotation behavior and adsorption mechanism of novel(1-hydroxy-2-methyl-2-octenyl) phosphonic acid(HEPA) to cassiterite were investigated by micro-flotation tests, zeta potential measurements, FTIR determination and density functional theory(DFT) calculation. The flotation results demonstrated that HEPA exhibited superior collecting performance compared with styrene phosphonic acid(SPA). The cassiterite recovery maintained above 90% over a wide pH range of 2-9 with 50 mg/L HEPA. The results of zeta potential measurement and FTIR detection indicated that the adsorption of HEPA onto cassiterite was mainly attributed to the chemisorption between HEPA monoanions and Sn species on mineral surfaces. The DFT calculation results demonstrated that HEPA monoanions owned higher HOMO energy and exhibited a better affinity to cassiterite than SPA, which provided very clear evidence for the stronger collecting power of HEPA presented in floatation test and zeta potential measurement.
文摘In order to learn the ways and possible utilization mechanisms of dissolved inorganic carbon (DIC) in marine phytoplankton species under carbon-replete or -limited conditions, the activity of extracellular carbonic anhydrase (CA) was assayed in different pH, CO 2 and DIC concentrations. Extracellular CA in Amphidinium carterae and Prorocentrum minimum was detected under carbon-replete conditions, while in Melosira sp., Phaeodactylum tricornutum, Skeletonema costatum, Thalassiosira rotula, Emiliania huxleyi and Pleurochrysis carterae, CA activity was assayed under conditions of carbon limitation. No CA activity was found even under carbon-limited conditions in Chaetoceros compressus, Glenodinium foliaceum, Coccolithus pelagicus, Gephrocapsa oceanica and Heterosigma akashiwo. In species without extracellular CA activity, the direct HCO - 3 uptake was investigated using a pH drift technique and the anion exchange inhibitor 4′4′-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS) in a closed system. The result showed that direct HCO - 3 transport might occur by an anion exchange mechanism in species Coc. pelagicus and G. oceanica. Of the 13 species investigated, only H. akashiwo did not have the potential for direct uptake or extracellular CA-catalyzed HCO - 3 utilization.
文摘Abscisic acid (ABA) plays an important role in plant growth and developmental processes. Although some ABA signal molecules, such as cADPR, Ca2+, etc., have been reported, there. was no evidence proving the involvement of cAMP in A-B-A, signal transduction. In this present study, the constructed gene ( rd29A-GUS) was transformed into Nicotiana tabacum, and calli was induced from the transgenic plant. The suspension cells obtained from the callus grew well and uniformly. Treatment of the suspension cells with ABA led to an increase in GUS activity, indicating that these transgenic suspension cells are useful for the study of ABA signaling. Addition of nicotinamide (cADPR inhibitor) or U-73122 (phospholiphase C inhibitor) could only partially inhibit the increase of GUS activity elicited by ABA. The inhibitory effect of nicotinamide was enhanced by application of K252a (inhibitor of protein kinase). Treatment of the suspension cells with 8-Br-cAMP, a membrane-permeable analogue of cAMP, could partially replace the effect of ABA. Furthermore, intracellular addition of IBMX (phosphodiesterase inhibitor) mimicked die effect of exogenous cAMP on the deduction of expression of rd29A promoter. These results suggested that cAMP was an important messenger in ABA signal transduction in tobacco suspension cell.
文摘alkoxy-propylamines, C12H25O(CH2)3NH2, C14H29O(CH2)3NH2, C16H33O(CH2)3NH2, C18H37O-(CH2)3NH2 were synthesized from aliphatic alcohol and acrylonitrile. The flotation tests of kaolinite, pyrophyllite and illite were conducted. The flotation mechanisms were explained in view of the structures of reagents and aluminium silicate minerals, zeta potential and Fourier transform infrared spectrum measurements. The results show that the synthesized r-alkoxy-propylamines are more effective than dodecyl amine for flotation of kaolinite, pyrophyllite and illite. For flotation kaolinite and illite, the collecting ability is in the order of C18H37O(CH2)3NH2>C16H33O-(CH2)3NH2>C14H29O(CH2)3NH2>C12H25O(CH2)3NH2, but the r-alkoxy-propylamines types of collectors have almost the same collecting ability on pyrophyllite, which demonstrating that γ-alkoxy-propylamines are new selective collectors for reverse floatation to remove aluminium silicate minerals from bauxite.
基金Project(B14034)supported by the National "111" Project of Ministry of Education of ChinaProject(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject supported by the 2014 Sublimation Scholar Program of Central South University,China
文摘The effect of octanol in cassiterite flotation using benzohydroxamic acid (BHA) as a collector was investigated. Theadsorption mechanism of octanol and BHA on the surface of cassiterite was analyzed by adsorption experiments and infrared spectraanalysis. Micro-flotation results indicated that single octanol exhibited almost no collecting power to cassiterite over a wide pHrange. However, as an auxiliary collector, octanol could markedly decrease the consumption of collector BHA and keep the recoveryof cassiterite in high level. The results of adsorption experiments and infrared spectra demonstrated that single octanol was notadsorbed on the surface of cassiterite. It formed adsorption connected with BHA on the surface of cassiterite, and enhanced thehydrophobicity of cassiterite. Octanol promoted the adsorption amount of BHA on the cassiterite surface, and decreased theconsumption of BHA.
基金Project(51090385) supported by the Major Program of the National Natural Science Foundation of ChinaProjects(121102000000160001,121102000000170013) supported by the Ministry of Land and Resources Department Budget,China+1 种基金Project(DD20179133) supported by the Geological Survey and Evaluation Project of ChinaProject(2018M641439) supported by China Postdoctoral Science Foundation
文摘Flotation is often employed to separate valuable natural minerals and gangue minerals.However,few studies have been conducted on artificial mineral flotation.Anosovite,the primary mineral in titanium slag,is a typical artificial mineral that can be enriched by flotation.In the present work,flotation behavior and adsorption mechanism of anosovite in salicylhydroxamic acid(SHA)solution were studied.The influence of pH and SHA dosage on anosovite flotability was investigated.Micro-flotation test results show that a pH range of 7–8.5 is available for SHA to collect anosovite.A maximum recovery of 93.26%can be obtained with SHA dosage of only 4×10.5 mol/L.In addition,TOC,zeta potential,FTIR,SEM-EDS,and XPS analyses were used to study the adsorption mechanism.Results demonstrated that SHA adsorption is governed by chemisorption.XPS studies further suggested that chemical adsorption occurred at the Ti sites on the anosovite surface.
基金Projects(2020GDASYL-20200302009,2020GDASYL-20200302004,2019GDASYL-0501007)supported by Guandong Academy of Sciences,ChinaProject(2020YFC1909202)supported by Ministry of Science and Technology of China。
文摘In order to improve the recovery of tungsten ores containing tin minerals,anisic hydroxamic acid(p-methoxy benzohydroxanic acid,PMOB)was synthesized and introduced as novel collector in the flotation of scheelite,wolframite and cassiterite.The flotation performance and adsorption mechanism were investigated by micro/batch flotation,zeta potential measurements and density functional theory(DFT).The micro flotation results showed that the recoveries of scheelite,wolframite and cassiterite using PMOB as collector are 97.45%,95.77% and 90.08%,respectively,and the corresponding recoveries are 91.00%,84.30% and 84.67% for benzohydroxamic acid(BHA).The batch flotation results revealed that the collector dosage could be reduced by about 45% for PMOB compared with BHA,in the case of similar flotation indicators.Zeta potential measurements indicated that PMOB could be adsorbed on the mineral surfaces by chemisorption.Moreover,density functional theory(DFT)calculation results showed that the substituent group—OCH_(3)endues PMOB stronger electron donation ability and hydrophobicity compared with benzohydroxamic acid(BHA),pmethyl benzohydroxamic acid(PMB)and p-hydroxyl benzohydroxamic acid(PHB).