首先推导与归纳了图像三维变换中像素深度场的变换规律,同时提出了基于深度场和极线原则的像素可见性别方法,根据上述理论和方法,提出一种基于深度图像的建模与绘制(image-based modeling and rendering,简称IBMR)技术,称为虚平面映射....首先推导与归纳了图像三维变换中像素深度场的变换规律,同时提出了基于深度场和极线原则的像素可见性别方法,根据上述理论和方法,提出一种基于深度图像的建模与绘制(image-based modeling and rendering,简称IBMR)技术,称为虚平面映射.该技术可以基于图像空间内任意视点对场景进行绘制.绘制时,先在场景中根据视线建立若干虚拟平面,将源深度图像中的像素转换到虚平面上,然后通过对虚平面上像素的中间变换,将虚平面转换成平面纹理,再利用虚平面的相互拼接,将视点的成像以平面纹理映射的方式完成.新方法还能在深度图像内侧,基于当前视点快速获得该视点的全景图,从而实现视点的实时漫游.新方法视点运动空间大、存储需求小,且可以发挥图形硬件的纹理映射功能,并能表现物体表面的三维凹凸细节和成像视差效果,克服了此前类似算法的局限和不足.展开更多
Typically, relief generation from an input 3D scene is limited to either bas-relief or high-relief modeling. This paper presents a novel unified scheme for synthesizing reliefs guided by the geometric texture richness...Typically, relief generation from an input 3D scene is limited to either bas-relief or high-relief modeling. This paper presents a novel unified scheme for synthesizing reliefs guided by the geometric texture richness of 3D scenes; it can generate both bas- and high-reliefs. The type of relief and compression coefficient can be specified according to the user's artistic needs. We use an energy minimization function to obtain the surface reliefs, which contains a geometry preservation term and an edge constraint term. An edge relief measure determined by geometric texture richness and edge z-depth is utilized to achieve a balance between these two terms. During relief generation, the geometry preserwtion term keeps local surface detail in the original scenes, while the edge constraint term maintains regions of the original models with rich geometric texture. Elsewhere, in high- reliefs, the edge constraint term also preserves depth discontinuities in the higher parts of the original scenes. The energy function can be discretized to obtain a sparse linear system. The reliefs are obtained by solving it by an iterative process. Finally, we apply non-linear compression to the relief to meet the user's artistic needs. Experimental results show the method's effectiveness for generating both bas- and high-reliefs for complex 3D scenes in a unified manner.展开更多
基金the National Natural Science Foundation of China under Grant No.60473105(国家自然科学基金)the National Basic Research Program of China under Grant No.2002CB312102(国家重点基础研究发展计划(973))the Studentship Grant of University of Macao(澳门大学研究生奖学金)
文摘首先推导与归纳了图像三维变换中像素深度场的变换规律,同时提出了基于深度场和极线原则的像素可见性别方法,根据上述理论和方法,提出一种基于深度图像的建模与绘制(image-based modeling and rendering,简称IBMR)技术,称为虚平面映射.该技术可以基于图像空间内任意视点对场景进行绘制.绘制时,先在场景中根据视线建立若干虚拟平面,将源深度图像中的像素转换到虚平面上,然后通过对虚平面上像素的中间变换,将虚平面转换成平面纹理,再利用虚平面的相互拼接,将视点的成像以平面纹理映射的方式完成.新方法还能在深度图像内侧,基于当前视点快速获得该视点的全景图,从而实现视点的实时漫游.新方法视点运动空间大、存储需求小,且可以发挥图形硬件的纹理映射功能,并能表现物体表面的三维凹凸细节和成像视差效果,克服了此前类似算法的局限和不足.
基金supported by the National Natural Science Foundation of China under Grant No.61272309
文摘Typically, relief generation from an input 3D scene is limited to either bas-relief or high-relief modeling. This paper presents a novel unified scheme for synthesizing reliefs guided by the geometric texture richness of 3D scenes; it can generate both bas- and high-reliefs. The type of relief and compression coefficient can be specified according to the user's artistic needs. We use an energy minimization function to obtain the surface reliefs, which contains a geometry preservation term and an edge constraint term. An edge relief measure determined by geometric texture richness and edge z-depth is utilized to achieve a balance between these two terms. During relief generation, the geometry preserwtion term keeps local surface detail in the original scenes, while the edge constraint term maintains regions of the original models with rich geometric texture. Elsewhere, in high- reliefs, the edge constraint term also preserves depth discontinuities in the higher parts of the original scenes. The energy function can be discretized to obtain a sparse linear system. The reliefs are obtained by solving it by an iterative process. Finally, we apply non-linear compression to the relief to meet the user's artistic needs. Experimental results show the method's effectiveness for generating both bas- and high-reliefs for complex 3D scenes in a unified manner.