Partial pressure of CO2(pCO2) was investigated in the Changjiang(Yangtze River) Estuary,Hangzhou Bay and their adjacent areas during a cruise in August 2004,China.The data show that pCO2 in surface waters of the studi...Partial pressure of CO2(pCO2) was investigated in the Changjiang(Yangtze River) Estuary,Hangzhou Bay and their adjacent areas during a cruise in August 2004,China.The data show that pCO2 in surface waters of the studied area was higher than that in the atmosphere with only exception of a patch east of Zhoushan Archipelago.The pCO2 varied from 168 to 2 264 μatm,which fell in the low range compared with those of other estuaries in the world.The calculated sea-air CO2 fluxes decreased offshore and varied from -10.0 to 88.1 mmol m-2 d-1 in average of 24.4 ± 16.5 mmol m-2 d-1.Although the area studied was estimated only 2 × 104 km2,it emitted(5.9 ± 4.0) × 103 tons of carbon to the atmosphere every day.The estuaries and their plumes must be further studied for better understanding the role of coastal seas playing in the global oceanic carbon cycle.展开更多
The authors propose a new "three-layer" conceptual model for the air-sea exchange of organic gases, which includes a dynamic surface microlayer with photochemical and biological processes. A parameterization...The authors propose a new "three-layer" conceptual model for the air-sea exchange of organic gases, which includes a dynamic surface microlayer with photochemical and biological processes. A parameterization of this three-layer model is presented, which was used to calculate the air-sea fluxes of acetone over the Pacific Ocean. The air-sea fluxes of acetone calculated by the three-layer model are in the same direction but possess half the magnitude of the fluxes calculated by the traditional two-layer model in the absence of photochemical and biological processes. However, photochemical and biological processes impacting acetone in the microlayer can greatly vary the calculated fluxes in the three-layer model, even reversing their direction under favorable conditions. Our model may help explain the discrepancies between measured and calculated acetone fluxes in previous studies. More measurements are needed to validate our conceptual model and provide constraints on the model parameters.展开更多
基金Supported by the National Basic Research Program of China (973 Program, No. 2005CB407305)the open foundation of the Key Laboratory of Marine Sedimentology & Environmental Geology, SOA (No. MASEG200606)+1 种基金the Qingdao Special Program for Leading Scientists (No. 05-2-JC-90)the 100-Talent Project of the Chinese Academy of Sciences
文摘Partial pressure of CO2(pCO2) was investigated in the Changjiang(Yangtze River) Estuary,Hangzhou Bay and their adjacent areas during a cruise in August 2004,China.The data show that pCO2 in surface waters of the studied area was higher than that in the atmosphere with only exception of a patch east of Zhoushan Archipelago.The pCO2 varied from 168 to 2 264 μatm,which fell in the low range compared with those of other estuaries in the world.The calculated sea-air CO2 fluxes decreased offshore and varied from -10.0 to 88.1 mmol m-2 d-1 in average of 24.4 ± 16.5 mmol m-2 d-1.Although the area studied was estimated only 2 × 104 km2,it emitted(5.9 ± 4.0) × 103 tons of carbon to the atmosphere every day.The estuaries and their plumes must be further studied for better understanding the role of coastal seas playing in the global oceanic carbon cycle.
基金funded by the National Natural Science Foundation of China (Grant No. 41222035)
文摘The authors propose a new "three-layer" conceptual model for the air-sea exchange of organic gases, which includes a dynamic surface microlayer with photochemical and biological processes. A parameterization of this three-layer model is presented, which was used to calculate the air-sea fluxes of acetone over the Pacific Ocean. The air-sea fluxes of acetone calculated by the three-layer model are in the same direction but possess half the magnitude of the fluxes calculated by the traditional two-layer model in the absence of photochemical and biological processes. However, photochemical and biological processes impacting acetone in the microlayer can greatly vary the calculated fluxes in the three-layer model, even reversing their direction under favorable conditions. Our model may help explain the discrepancies between measured and calculated acetone fluxes in previous studies. More measurements are needed to validate our conceptual model and provide constraints on the model parameters.