During the early Silurian, a transgressive and vast shallow sea with flat sea-floor covered the central Tarim Basin (the Tazhong area). The depositional environment of the middle member of the Kalpingtag Formation is ...During the early Silurian, a transgressive and vast shallow sea with flat sea-floor covered the central Tarim Basin (the Tazhong area). The depositional environment of the middle member of the Kalpingtag Formation is controversial. In order to provide a basis for the prediction of reservoir sand, the sedimentary facies are recognized according to abundant core observations and de- scriptions combined with well-log analysis, isograms, seismic interpretations and regional sedimentary background. The middle member of the Kalpingtag Formation, which shows a retrograding sequence, is interpreted as braid-delta deposits influenced by mi- nor tidal reworking. The sources of clasts are from the southern uplift. The subaqueous braid-delta deposits in the study area have some characteristics quite different from the common deltas that generally deposit in marginal seas. Four facies grouped to a delta front association are recognized, ranging from distributary-channel (Facies A), front bar (Facies B), sand sheet (Facies C) and inter- distributary bay (Facies D). The distributary channels construct the sandbody framework of the delta front. Front bar deposits, which are fine-grained with low depositional dips, display a near-continuous sand strip around the entire periphery of the delta. Sand sheet deposits are mainly found in front of Facies B, gradationally contacting with the prodelta. The interdistributary bay is essentially the uppermost unit capping the channel sequence and generally made up of laminated and massive mudstones. The delta front deposits display extensive sheet-like bodies contrasting with the characteristic wedge shapes of common subaqueous delta bodies. The bi- modal cross-stratification and mud drapes in the fine- to medium-grained sandstone in the distal area are inferred to reflect high-energy tidal processes.展开更多
Aromatic hydrocarbons are generally main distillation of crude oil and organic extract of source rocks. Bicyclic and tricyclic aromatic hydrocarbons can be purified by two-step method of chromatography on alumina. Car...Aromatic hydrocarbons are generally main distillation of crude oil and organic extract of source rocks. Bicyclic and tricyclic aromatic hydrocarbons can be purified by two-step method of chromatography on alumina. Carbon isotopic composition of in- dividual aromatic hydrocarbons is affected not only by thermal maturity, but also by organic matter input, depositional envi- ronment, and hydrocarbon generation process based on the GC-IRMS analysis of Upper Ordovician, Lower Ordovician, and Cambrian source rocks in different areas in the Tarim Basin, western China. The subgroups of aromatic hydrocarbons as well as individual aromatic compound, such as 1-MP, 9-MP, and 2,6-DMP from Cambrian-Lower Ordovician section show more depleted 13C distribution. The δ13C value difference between Cambrian-Lower Ordovician section and Upper Ordovician source rocks is up to 16.1%o for subgroups and 14%o for individual compounds. It can provide strong evidence for oil source correlation by combing the δ13C value and biomarker distribution of different oil and source rocks from different strata in the Tarim Basin. Most oils from Tazhong area have geochemical characteristics such as more negative δI3Cg_Mp value, poor gam macerane, and abundant homohopanes, which indicate that Upper Ordovician source rock is the main source rock. In contrast, oils from Tadong area and some oils from Tazhong area have geochemical characteristics such as high 613C9-MP, value, abun dant gammacerane, and poor homohopanes, which suggest that the major contributor is Cambrian-Lower Ordovician source rock.展开更多
文摘During the early Silurian, a transgressive and vast shallow sea with flat sea-floor covered the central Tarim Basin (the Tazhong area). The depositional environment of the middle member of the Kalpingtag Formation is controversial. In order to provide a basis for the prediction of reservoir sand, the sedimentary facies are recognized according to abundant core observations and de- scriptions combined with well-log analysis, isograms, seismic interpretations and regional sedimentary background. The middle member of the Kalpingtag Formation, which shows a retrograding sequence, is interpreted as braid-delta deposits influenced by mi- nor tidal reworking. The sources of clasts are from the southern uplift. The subaqueous braid-delta deposits in the study area have some characteristics quite different from the common deltas that generally deposit in marginal seas. Four facies grouped to a delta front association are recognized, ranging from distributary-channel (Facies A), front bar (Facies B), sand sheet (Facies C) and inter- distributary bay (Facies D). The distributary channels construct the sandbody framework of the delta front. Front bar deposits, which are fine-grained with low depositional dips, display a near-continuous sand strip around the entire periphery of the delta. Sand sheet deposits are mainly found in front of Facies B, gradationally contacting with the prodelta. The interdistributary bay is essentially the uppermost unit capping the channel sequence and generally made up of laminated and massive mudstones. The delta front deposits display extensive sheet-like bodies contrasting with the characteristic wedge shapes of common subaqueous delta bodies. The bi- modal cross-stratification and mud drapes in the fine- to medium-grained sandstone in the distal area are inferred to reflect high-energy tidal processes.
基金supported by National Natural Science Foundation of China(Grant No.40973041)College Fund for the Doctoral Project(Grant No.20104220110001)Natural Science Foundation of Hubei Province(Grant No.2009CDB205)
文摘Aromatic hydrocarbons are generally main distillation of crude oil and organic extract of source rocks. Bicyclic and tricyclic aromatic hydrocarbons can be purified by two-step method of chromatography on alumina. Carbon isotopic composition of in- dividual aromatic hydrocarbons is affected not only by thermal maturity, but also by organic matter input, depositional envi- ronment, and hydrocarbon generation process based on the GC-IRMS analysis of Upper Ordovician, Lower Ordovician, and Cambrian source rocks in different areas in the Tarim Basin, western China. The subgroups of aromatic hydrocarbons as well as individual aromatic compound, such as 1-MP, 9-MP, and 2,6-DMP from Cambrian-Lower Ordovician section show more depleted 13C distribution. The δ13C value difference between Cambrian-Lower Ordovician section and Upper Ordovician source rocks is up to 16.1%o for subgroups and 14%o for individual compounds. It can provide strong evidence for oil source correlation by combing the δ13C value and biomarker distribution of different oil and source rocks from different strata in the Tarim Basin. Most oils from Tazhong area have geochemical characteristics such as more negative δI3Cg_Mp value, poor gam macerane, and abundant homohopanes, which indicate that Upper Ordovician source rock is the main source rock. In contrast, oils from Tadong area and some oils from Tazhong area have geochemical characteristics such as high 613C9-MP, value, abun dant gammacerane, and poor homohopanes, which suggest that the major contributor is Cambrian-Lower Ordovician source rock.