期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Faster R-CNN的海上舰船识别算法
被引量:
4
1
作者
谷东亮
徐晓刚
金鑫
《图像与信号处理》
2018年第3期136-141,共6页
针对现有的舰船目标自动识别方法容易受到物理噪声干扰、实时性差等问题,提出一种基于深度学习中Faster R-CNN (快速区域卷积神经网络)的海上舰船识别算法。首先建立了一套海上舰船图片的训练集与测试集;其次为了增强网络的泛化能力,在...
针对现有的舰船目标自动识别方法容易受到物理噪声干扰、实时性差等问题,提出一种基于深度学习中Faster R-CNN (快速区域卷积神经网络)的海上舰船识别算法。首先建立了一套海上舰船图片的训练集与测试集;其次为了增强网络的泛化能力,在区域生成网络的第一个全连接层后增加了一个dropout层;最后为了减小过拟合,在分类时只使用了一个含有2048个神经元的全连接层。目前算法可以将海上舰船目标自动识别为航母、其他军舰、民船三类,在本文设定的测试集上准确率为90.4%,检测速度为每秒15帧左右。
展开更多
关键词
海上舰船识别
深度学习
FASTER
R-CNN
训练集
测试集
下载PDF
职称材料
题名
基于Faster R-CNN的海上舰船识别算法
被引量:
4
1
作者
谷东亮
徐晓刚
金鑫
机构
海军大连舰艇学院学员五大队
海军大连舰艇学院航海系
出处
《图像与信号处理》
2018年第3期136-141,共6页
基金
国家自然科学基金(61471412)
国家自然科学基金(61273262)
+1 种基金
辽宁省自然科学基金(2015020086)
辽宁省博士启动基金(201501029)。
文摘
针对现有的舰船目标自动识别方法容易受到物理噪声干扰、实时性差等问题,提出一种基于深度学习中Faster R-CNN (快速区域卷积神经网络)的海上舰船识别算法。首先建立了一套海上舰船图片的训练集与测试集;其次为了增强网络的泛化能力,在区域生成网络的第一个全连接层后增加了一个dropout层;最后为了减小过拟合,在分类时只使用了一个含有2048个神经元的全连接层。目前算法可以将海上舰船目标自动识别为航母、其他军舰、民船三类,在本文设定的测试集上准确率为90.4%,检测速度为每秒15帧左右。
关键词
海上舰船识别
深度学习
FASTER
R-CNN
训练集
测试集
分类号
TP39 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Faster R-CNN的海上舰船识别算法
谷东亮
徐晓刚
金鑫
《图像与信号处理》
2018
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部