Climate affects Picea crassifolia growth and climate change will lead to changes in the climate–growth relationship(i.e., the "divergence" phenomenon). However, standardization methods can also change the u...Climate affects Picea crassifolia growth and climate change will lead to changes in the climate–growth relationship(i.e., the "divergence" phenomenon). However, standardization methods can also change the understanding of such a relationship. We tested the stability of this relationship by considering several variables: 1) two periods(1952–1980 and 1981–2009), 2) three elevations(2700, 3000, and 3300 m), and 3) chronologies detrended using cubic splines with two different flexibilities. With increasing elevation, the climatic factor limiting the radial growth of Picea crassifolia shifted from precipitation to temperature. At the elevation of 2700 m, the relationship between radial growth and mean temperature of the previous December changed so that the more flexible spline had a greater precipitation signal. At the elevation of 3000 m, positive correlation of radial growth with mean temperature and precipitation in September of the previous year became more significant. At the elevation of 3300 m, positive correlation between radial growth and precipitation of the currentsummer and the previous spring and autumn was no longer significant, whereas the positive correlation between radial growth and temperature of the current spring and summer strengthened. The detrending with the most flexible spline enhanced the precipitation signal at 2700 m, while that with the least flexible spline enhanced the temperature signal at 3300 m. All results indicated that the divergence phenomenon was affected by the climatic signals in the chronologies and that it was most dependent on the detrending method. This suggests it is necessary to select a suitable spline bootstrap for studies of growth divergence phenomena.展开更多
We simulated the temporal correlation of sound transmission using a two-dimensional advective frozen-ocean model with temperature data from a temperature sensor array on a propagation path in the South China Sea (SCS...We simulated the temporal correlation of sound transmission using a two-dimensional advective frozen-ocean model with temperature data from a temperature sensor array on a propagation path in the South China Sea (SCS) Experiment 2009, and investigated the relationships of temporal correlation length, source-receiver range, and maximal sound speed fluctuation mainly caused by the solitary internal waves. We found that the temporal correlation length is -h2-power dependent on source-receiver range and -0.9-power dependent on maximal sound speed fluctuation. The empirical relationship is deduced from one-day environmental measurements in a limited area, needing more works and verification in the future with more acoustic data. But the relationship is useful in many applications in the area of SCS Experiment 2009.展开更多
基金supported by the "the Fundamental Research Funds for the Central Nonprofit Research Institution of CAF",Forest degradation and restoration mechanisms of the alpine mountains from the western China (contract: CAFYBB2014ZD001)
文摘Climate affects Picea crassifolia growth and climate change will lead to changes in the climate–growth relationship(i.e., the "divergence" phenomenon). However, standardization methods can also change the understanding of such a relationship. We tested the stability of this relationship by considering several variables: 1) two periods(1952–1980 and 1981–2009), 2) three elevations(2700, 3000, and 3300 m), and 3) chronologies detrended using cubic splines with two different flexibilities. With increasing elevation, the climatic factor limiting the radial growth of Picea crassifolia shifted from precipitation to temperature. At the elevation of 2700 m, the relationship between radial growth and mean temperature of the previous December changed so that the more flexible spline had a greater precipitation signal. At the elevation of 3000 m, positive correlation of radial growth with mean temperature and precipitation in September of the previous year became more significant. At the elevation of 3300 m, positive correlation between radial growth and precipitation of the currentsummer and the previous spring and autumn was no longer significant, whereas the positive correlation between radial growth and temperature of the current spring and summer strengthened. The detrending with the most flexible spline enhanced the precipitation signal at 2700 m, while that with the least flexible spline enhanced the temperature signal at 3300 m. All results indicated that the divergence phenomenon was affected by the climatic signals in the chronologies and that it was most dependent on the detrending method. This suggests it is necessary to select a suitable spline bootstrap for studies of growth divergence phenomena.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX1-YW-12-02)the National Natural Science Foundation of China (Nos.10974218,10734100)
文摘We simulated the temporal correlation of sound transmission using a two-dimensional advective frozen-ocean model with temperature data from a temperature sensor array on a propagation path in the South China Sea (SCS) Experiment 2009, and investigated the relationships of temporal correlation length, source-receiver range, and maximal sound speed fluctuation mainly caused by the solitary internal waves. We found that the temporal correlation length is -h2-power dependent on source-receiver range and -0.9-power dependent on maximal sound speed fluctuation. The empirical relationship is deduced from one-day environmental measurements in a limited area, needing more works and verification in the future with more acoustic data. But the relationship is useful in many applications in the area of SCS Experiment 2009.