GPS measurement,an effective method for surveying glacier surface topography,has been applied in some glaciers for many years.The Shuiguan River No.4 glacier,a small glacier with its area of 1.84 km2 in 1972,located i...GPS measurement,an effective method for surveying glacier surface topography,has been applied in some glaciers for many years.The Shuiguan River No.4 glacier,a small glacier with its area of 1.84 km2 in 1972,located in the east of the Qilian Mountains,China,was selected to study its ice elevation change using GPS measurement in 2007.This study was conducted on the ablation area with GPS-measured area 0.5 km2.The ice elevation change of the glacier was obtained by comparing the DEM obtained by a 1:50 000 topographic map made in 1972 with the DEM by GPS-measured data acquired in 2007.The differences of the two DEMs showed the thinning condition of the glacier was apparent.The mean thinning was 15±8 m with the mean thinning rate of 0.42±0.22 m a-1 for 1972-2007 in the measurement area,which equaled 0.38±0.20 m yr-1 in water equivalent(w.e.).The prominent thinning occurred on the south part of the glacier,which was the area near the glacier terminus with the maximum thinning of 41±8 m.Assuming the thinning value of 15±8 m for the glacier area below 4640 m a.s.l.,the wasting ice mass was calculated to be 6.4±3.2×10-3 km3 for 1972-2007,corresponding to 5.7±2.8×10-3 km3 w.e.,which meant that the montane runoff released by the glacier was at least 5.7±2.8×106 m3 between 1972-2007.展开更多
This paper is intended to determine physical parameters describing volumetric heat capacity and thermal conductivity of sea ice in u quasi-linear thermodynamic system using field observations. The quasi-linear thermod...This paper is intended to determine physical parameters describing volumetric heat capacity and thermal conductivity of sea ice in u quasi-linear thermodynamic system using field observations. The quasi-linear thermodynamic system of sea ice with unknown physical parameters is described, and the existence and uniqueness of its solution is proved. Then the physical parameters are taken as control variable, temperature devi- ations as objective function, and a parameter identification model is established. The existence of its optimal solution is discussed. To solve the identification model, a new algorithm containing genetic algorithm, Hooke- Jeeves algorithm and semi-implicit finite difference scheme is constructed. The physical parameters are calculated using the obser- vations measured at Nella Fjord around Zhongshan Station, Antarctic in CHINARE 2006. For comparability and consistency with other works, a new internationM standard named TEOS-10 is used. To examine the validity of the identified results, another sim- ulation for temperature profiles in different measurement period is operated. Numerical results show that better simulations of temperature distribution are possible with the identified parameters than EC1993. Therefore not only the identified parameters can be applied in sea ice modeling, but also this study can enrich and supplement observations of sea ice.展开更多
基金supported by the National Basic Work Program of Chinese Ministry of Science and Technology (Grant No.2006FY110200)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-YW-GJ04)
文摘GPS measurement,an effective method for surveying glacier surface topography,has been applied in some glaciers for many years.The Shuiguan River No.4 glacier,a small glacier with its area of 1.84 km2 in 1972,located in the east of the Qilian Mountains,China,was selected to study its ice elevation change using GPS measurement in 2007.This study was conducted on the ablation area with GPS-measured area 0.5 km2.The ice elevation change of the glacier was obtained by comparing the DEM obtained by a 1:50 000 topographic map made in 1972 with the DEM by GPS-measured data acquired in 2007.The differences of the two DEMs showed the thinning condition of the glacier was apparent.The mean thinning was 15±8 m with the mean thinning rate of 0.42±0.22 m a-1 for 1972-2007 in the measurement area,which equaled 0.38±0.20 m yr-1 in water equivalent(w.e.).The prominent thinning occurred on the south part of the glacier,which was the area near the glacier terminus with the maximum thinning of 41±8 m.Assuming the thinning value of 15±8 m for the glacier area below 4640 m a.s.l.,the wasting ice mass was calculated to be 6.4±3.2×10-3 km3 for 1972-2007,corresponding to 5.7±2.8×10-3 km3 w.e.,which meant that the montane runoff released by the glacier was at least 5.7±2.8×106 m3 between 1972-2007.
文摘This paper is intended to determine physical parameters describing volumetric heat capacity and thermal conductivity of sea ice in u quasi-linear thermodynamic system using field observations. The quasi-linear thermodynamic system of sea ice with unknown physical parameters is described, and the existence and uniqueness of its solution is proved. Then the physical parameters are taken as control variable, temperature devi- ations as objective function, and a parameter identification model is established. The existence of its optimal solution is discussed. To solve the identification model, a new algorithm containing genetic algorithm, Hooke- Jeeves algorithm and semi-implicit finite difference scheme is constructed. The physical parameters are calculated using the obser- vations measured at Nella Fjord around Zhongshan Station, Antarctic in CHINARE 2006. For comparability and consistency with other works, a new internationM standard named TEOS-10 is used. To examine the validity of the identified results, another sim- ulation for temperature profiles in different measurement period is operated. Numerical results show that better simulations of temperature distribution are possible with the identified parameters than EC1993. Therefore not only the identified parameters can be applied in sea ice modeling, but also this study can enrich and supplement observations of sea ice.