As an important component of the cryosphere, sea ice is very sensitive to climate change. The study of sea ice physics needs accurate sea ice thickness. This paper presents an electromagnetic induction (EM) techniqu...As an important component of the cryosphere, sea ice is very sensitive to climate change. The study of sea ice physics needs accurate sea ice thickness. This paper presents an electromagnetic induction (EM) technique which can be used to measure the sea ice thickness distribution efficiently and its successful application in the Antarctic Neila Fjord. Based on the electrical properties of sea ice and seawater and the application of electromagnetic field theory, this technique can accurately detect the distance between the EM instrument and the ice/water interface to measure the sea ice thickness. Analyzing the apparent conductivity data obtained by the electromagnetic induction technique and drill-hole measurements at same location allows the construction of a transform equation for the apparent conductivity and sea ice thickness. The verification of the calculated sea ice thickness using this equation indicates that the electromagnetic induction technique is able to determine reliable sea ice thickness with an average relative error of only 5.5%. The ice thickness profiles show the sea ice distribution in Neila Fjord is basically level with a thickness of 0.8 - 1.4 m.展开更多
A free-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Chinese Academy of Sciences,...A free-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Chinese Academy of Sciences, and is applied to simulate surface current and sea ice variations in the Arctic Mediterranean Seas. A dynamic sea ice model in elastic-viscous-plastic rheology and a thermodynamic sea ice model are employed. A 200-year simulation is performed and a dimatological average of a 10-year period (14lst-150th) is presented with focus on sea ice concentration and surface current variations in the Arctic Mediterranean Seas. The model is able to simulate well the East Greenland Current, Beaufort Gyre and the Transpolar Drift, but the simulated West Spitsbergen Current is small and weak. In the March climatology, the sea ice coverage can be simulated well except for a bit more ice in east of Spitsbergen Island. The result is also good for the September scenario except for less ice concentration east of Greenland and greater ice concentration near the ice margin. The extra ice east of Spitsbergen Island is caused by sea ice current convergence forced by atmospheric wind stress.展开更多
The sedimentary facies of the subaqueous Changjiang (Yangtze) River delta since the late Pleistocene was studied based on lithology and foraminifera analysis for two boreholes, CJK07 and CJK11, along with 14C dating...The sedimentary facies of the subaqueous Changjiang (Yangtze) River delta since the late Pleistocene was studied based on lithology and foraminifera analysis for two boreholes, CJK07 and CJK11, along with 14C dating. Four sedimentary facies were identified, namely fluvial, tidal flat, offshore, and prodelta facies. The fluvial sedimentary facies is comprised of fluvial channel lag deposits, fluvial point bar deposits, and floodplain deposits, showing a fining-upward sequence in general with no benthic foraminifera. A layer of stiff clay overlies the fluvial deposits in core CJK07, indicating a long-term exposure environment during the Last Glacial Maximum (LGM). During the postglacial sea-level rise around 13-7.5 cal ka BP, the tidal flat facies was deposited in core CJK11, characterized by abundant silt-clay couplets. Euryhaline species dominate the subtidal fiat foraminiferal assemblages, while almost no foraminifera was found in the intertidal fiat. The offshore environment was the major sedimentary environment when the sea level reached its highest level around 7.5 cal ka BP, with a maximum accumulation rate of 10 mm/a found in core CJK11. Prodelta sediments have been deposited in core CJK11 since -3 cal ka BP, after the formation of the Changjiang River delta. The difference in sedimentary facies between core CJK07 and CJK11 is due to their location: core CJK07 was in an interfluve while core CJK11 was in an incised valley during the LGM. Furthermore, AMS 14C dating of core CJK07 shows poor chronological order, indicating that the sediments were reworked by strong tidal currents and that sediment deposited since -7.7 cal ka BP in core CJK07 was eroded away by modem hydrodynamic forces caused by the southward shift of the Changjiang River delta depocenter.展开更多
GPS measurement,an effective method for surveying glacier surface topography,has been applied in some glaciers for many years.The Shuiguan River No.4 glacier,a small glacier with its area of 1.84 km2 in 1972,located i...GPS measurement,an effective method for surveying glacier surface topography,has been applied in some glaciers for many years.The Shuiguan River No.4 glacier,a small glacier with its area of 1.84 km2 in 1972,located in the east of the Qilian Mountains,China,was selected to study its ice elevation change using GPS measurement in 2007.This study was conducted on the ablation area with GPS-measured area 0.5 km2.The ice elevation change of the glacier was obtained by comparing the DEM obtained by a 1:50 000 topographic map made in 1972 with the DEM by GPS-measured data acquired in 2007.The differences of the two DEMs showed the thinning condition of the glacier was apparent.The mean thinning was 15±8 m with the mean thinning rate of 0.42±0.22 m a-1 for 1972-2007 in the measurement area,which equaled 0.38±0.20 m yr-1 in water equivalent(w.e.).The prominent thinning occurred on the south part of the glacier,which was the area near the glacier terminus with the maximum thinning of 41±8 m.Assuming the thinning value of 15±8 m for the glacier area below 4640 m a.s.l.,the wasting ice mass was calculated to be 6.4±3.2×10-3 km3 for 1972-2007,corresponding to 5.7±2.8×10-3 km3 w.e.,which meant that the montane runoff released by the glacier was at least 5.7±2.8×106 m3 between 1972-2007.展开更多
Based on the observation data from China coastal marine stations,the key indicators of marine climate along China coast were explored,including sea surface t emperature(SST),sea level and sea ice.Results show that:(a)...Based on the observation data from China coastal marine stations,the key indicators of marine climate along China coast were explored,including sea surface t emperature(SST),sea level and sea ice.Results show that:(a)The SST along China coast continues rising and increased by 0.25℃/decade during 1980-2019,the warming accelerated significantly after 2011 and it has been well above normal for five consecutive years since 2015.In 2019,the average SST along China coast was 1.1℃ higher than normal(with 1981-2010 taken as a reference period),ranking the highest since 1980.Besides,the SST extremes have been explored based on four long-term marine stations for the period 1960-2019.(b)Sea level along China coast continues to rise at an accelerated rate.The mean sea level rise rate along China Coast was about 2.4 mm/yr during 1960-2019,3.4 mm/yr during 1980-2019,and 3.9 mm/yr during 1993-2019,with significant regional differences.The relatively stronger sea level rise trends were observed along the coastal waters of the Bohai Bay,the Laizhou Bay,the Yangtze River Estuary,the Pearl River Estuary,and the Hainan Island,respectively.Besides,the extreme sea levels along China coast showed an obvious upward trend from 1980 to 2019.During this period,the annual rise rate of extreme high water level along China coast was 4.4 mm/yr,and had obvious regional characteristics,with the highest rate of 9.9 mm/yr observed at Yantai of Shandong Province,(c)The annual sea ice period and sea ice cover of the Bohai Sea(BS)decreased substantially during 1963-2019 by 0.7-1.3 days/yr and 45-59%/yr,respectively,and the decrease rate of ice cover is larger in the north than that in the south.2019 was the year of light icing.展开更多
Scattering of surface waves by the edge of a small undulation on a porous bed in an ocean of finite depth, where the free surface has an ice-cover being modelled as an elastic plate of very small thickness, is investi...Scattering of surface waves by the edge of a small undulation on a porous bed in an ocean of finite depth, where the free surface has an ice-cover being modelled as an elastic plate of very small thickness, is investigated within the framework of linearized water wave theory. The effect of surface tension at the surface below the ice-cover is neglected. There exists only one wave number propagating at just below the ice-cover. A perturbation analysis is employed to solve the boundary value problem governed by Laplace's equation by a method based on Green's integral theorem with the introduction of appropriate Green's function and thereby evaluating the reflection and transmission coefficients approximately up to first order. A patch of sinusoidal ripples is considered as an example and the related coefficients are determined.展开更多
Siberia experienced intense heat waves in 2020,and this unusual warming may have caused more wildfires and losses of permafrost than normal,both of which can be devastating to ecosystems.Based on observational data,th...Siberia experienced intense heat waves in 2020,and this unusual warming may have caused more wildfires and losses of permafrost than normal,both of which can be devastating to ecosystems.Based on observational data,this paper shows that there was an intense warming trend over Siberia(60°–75°N,70°–130°E)in June during 1979–2020.The linear trend of the June surface air temperature is 0.90℃/10 yr over Siberia,which is much larger than the area with the same latitudes(60°–75°N,0°–360°,trend of 0.46℃/10 yr).The warming over Siberia extends from the surface to about 300 h Pa.Increased geopotential height in the mid-to-upper troposphere plays an important role in shaping the Siberian warming,which favors more shortwave radiation reaching the surface and further heating the overlying atmosphere via upward turbulent heat flux and longwave radiation.The Siberian warming is closely related to Arctic sea-ice decline,especially the sea ice over northern Barents Sea and Kara Sea.Numerical experiments carried out using and atmospheric general circulation model(IAP-AGCM4.1)confirmed the contribution of the Arctic sea-ice decline to the Siberian warming and the related changes in circulations and surface fluxes.展开更多
Space borne radar scatterometers are primarily designed to measure the wind vector over the world ocean; yet they also provide useful information on sea ice type and extent. In this paper, it is shown how the SeaWinds...Space borne radar scatterometers are primarily designed to measure the wind vector over the world ocean; yet they also provide useful information on sea ice type and extent. In this paper, it is shown how the SeaWinds scatterometer can be used to detect new sea ice at the very beginning of its growth. Taking advantage of the very good coverage of the East Greenland Sea by SeaWinds on board the QuikSCAT satellite it has been possible to detect the early stage of formation of the sea ice peninsula, named the Odden, and to monitor its evolution during March 2001. The early sea ice detection has been validated by using RADARSAT Synthetic Aperture Radar scenes. It is also shown that microwave radiometers, such as the Special Sensor Microwave Imager (SSM/I), which are used as standard sensors for sea ice monitoring, do not detect the very early stage of sea ice growth and lag behind new sea ice occurrence by about twelve to twenty four hours.展开更多
In this study,the authors investigated changes in Last Glacial Maximum (LGM) sea surface temperature (SST) simulated by the Paleoclimate Modelling Intercomparison Project (PMIP) multimodels and reconstructed by ...In this study,the authors investigated changes in Last Glacial Maximum (LGM) sea surface temperature (SST) simulated by the Paleoclimate Modelling Intercomparison Project (PMIP) multimodels and reconstructed by the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) project,focusing on model-data comparison.The results showed that the PMIP models produced greater ocean cooling in the North Pacific and Tropical Ocean than the MARGO,particularly in the northwestem Pacific,where the modeldata mismatch was larger.All the models failed to capture the anomalous east-west SST gradient in the North Atlantic.In addition,large discrepancies among the models were observed in the mid-latitude ocean,particularly with models in the second phase of the PMIP.Although these models showed better agreement with the MARGO,the latest models in the third phase of the PMIP did not show substantial progresses in simulating LGM ocean surface conditions.That is,improvements in the modeling community are still needed to describe SST for a better understanding of climate during the LGM.展开更多
Over the past 100 years, worldwide surface temperatures have increased at an unprecedented rate, contributing to warming of the oceans, melting ice fields and glaciers, and other adverse climatic effects. Southeast Fl...Over the past 100 years, worldwide surface temperatures have increased at an unprecedented rate, contributing to warming of the oceans, melting ice fields and glaciers, and other adverse climatic effects. Southeast Florida's vulnerability derives from its geographic location, low elevation, porous geology, unusual ground and surface water hydrology, subtropical weather patterns, and proximity to the Atlantic Ocean. The region is especially susceptible to sea level rise. After several millennia of stable sea levels prior to the 20th century, sea levels have been rising at accelerating rates due to thermal expansion of the oceans and from land-based ice melt The Everglades ecosystem and the water supplies for southeast Florida are particularly vulnerable as neither can be protected without significant expenditures of public dollars, and even these efforts may not prove to be successful. New approaches may be required to improve the resilience and prolong the sustainability of the region's water resources and ecosystem. The efforts to adapt to sea level changes in both the urban area and ecosystem as outlined herein are date and incident based-climate changes may occur earlier or later so instead of spending limited public dollars early, expenditures can be adjusted given future information.展开更多
基金This work was supported by National Natural Science Foundation of China (Grant No. 40476005 and 40233032), the Ministry of Science and Technology, China (Grant No. 2005DIB3J114), and the "863 Project" (Grant No. 2006AA04Z206 and 2006AA09Z152).
文摘As an important component of the cryosphere, sea ice is very sensitive to climate change. The study of sea ice physics needs accurate sea ice thickness. This paper presents an electromagnetic induction (EM) technique which can be used to measure the sea ice thickness distribution efficiently and its successful application in the Antarctic Neila Fjord. Based on the electrical properties of sea ice and seawater and the application of electromagnetic field theory, this technique can accurately detect the distance between the EM instrument and the ice/water interface to measure the sea ice thickness. Analyzing the apparent conductivity data obtained by the electromagnetic induction technique and drill-hole measurements at same location allows the construction of a transform equation for the apparent conductivity and sea ice thickness. The verification of the calculated sea ice thickness using this equation indicates that the electromagnetic induction technique is able to determine reliable sea ice thickness with an average relative error of only 5.5%. The ice thickness profiles show the sea ice distribution in Neila Fjord is basically level with a thickness of 0.8 - 1.4 m.
基金the NSFC (No. 40675065) the National Basic Research Priorities Program of China (No.2005CB32170X)
文摘A free-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Chinese Academy of Sciences, and is applied to simulate surface current and sea ice variations in the Arctic Mediterranean Seas. A dynamic sea ice model in elastic-viscous-plastic rheology and a thermodynamic sea ice model are employed. A 200-year simulation is performed and a dimatological average of a 10-year period (14lst-150th) is presented with focus on sea ice concentration and surface current variations in the Arctic Mediterranean Seas. The model is able to simulate well the East Greenland Current, Beaufort Gyre and the Transpolar Drift, but the simulated West Spitsbergen Current is small and weak. In the March climatology, the sea ice coverage can be simulated well except for a bit more ice in east of Spitsbergen Island. The result is also good for the September scenario except for less ice concentration east of Greenland and greater ice concentration near the ice margin. The extra ice east of Spitsbergen Island is caused by sea ice current convergence forced by atmospheric wind stress.
基金Supported by the Marine Public Welfare Research Project(No.200805063)the National Natural Science Foundation of China(Nos.41076023 and 41106065)+1 种基金the Basic Fund Project of National Science and Technology Ministry(No.2008FY220300)the Coastal Investigation and Research Project of China(No.908-02-02-05)
文摘The sedimentary facies of the subaqueous Changjiang (Yangtze) River delta since the late Pleistocene was studied based on lithology and foraminifera analysis for two boreholes, CJK07 and CJK11, along with 14C dating. Four sedimentary facies were identified, namely fluvial, tidal flat, offshore, and prodelta facies. The fluvial sedimentary facies is comprised of fluvial channel lag deposits, fluvial point bar deposits, and floodplain deposits, showing a fining-upward sequence in general with no benthic foraminifera. A layer of stiff clay overlies the fluvial deposits in core CJK07, indicating a long-term exposure environment during the Last Glacial Maximum (LGM). During the postglacial sea-level rise around 13-7.5 cal ka BP, the tidal flat facies was deposited in core CJK11, characterized by abundant silt-clay couplets. Euryhaline species dominate the subtidal fiat foraminiferal assemblages, while almost no foraminifera was found in the intertidal fiat. The offshore environment was the major sedimentary environment when the sea level reached its highest level around 7.5 cal ka BP, with a maximum accumulation rate of 10 mm/a found in core CJK11. Prodelta sediments have been deposited in core CJK11 since -3 cal ka BP, after the formation of the Changjiang River delta. The difference in sedimentary facies between core CJK07 and CJK11 is due to their location: core CJK07 was in an interfluve while core CJK11 was in an incised valley during the LGM. Furthermore, AMS 14C dating of core CJK07 shows poor chronological order, indicating that the sediments were reworked by strong tidal currents and that sediment deposited since -7.7 cal ka BP in core CJK07 was eroded away by modem hydrodynamic forces caused by the southward shift of the Changjiang River delta depocenter.
基金supported by the National Basic Work Program of Chinese Ministry of Science and Technology (Grant No.2006FY110200)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-YW-GJ04)
文摘GPS measurement,an effective method for surveying glacier surface topography,has been applied in some glaciers for many years.The Shuiguan River No.4 glacier,a small glacier with its area of 1.84 km2 in 1972,located in the east of the Qilian Mountains,China,was selected to study its ice elevation change using GPS measurement in 2007.This study was conducted on the ablation area with GPS-measured area 0.5 km2.The ice elevation change of the glacier was obtained by comparing the DEM obtained by a 1:50 000 topographic map made in 1972 with the DEM by GPS-measured data acquired in 2007.The differences of the two DEMs showed the thinning condition of the glacier was apparent.The mean thinning was 15±8 m with the mean thinning rate of 0.42±0.22 m a-1 for 1972-2007 in the measurement area,which equaled 0.38±0.20 m yr-1 in water equivalent(w.e.).The prominent thinning occurred on the south part of the glacier,which was the area near the glacier terminus with the maximum thinning of 41±8 m.Assuming the thinning value of 15±8 m for the glacier area below 4640 m a.s.l.,the wasting ice mass was calculated to be 6.4±3.2×10-3 km3 for 1972-2007,corresponding to 5.7±2.8×10-3 km3 w.e.,which meant that the montane runoff released by the glacier was at least 5.7±2.8×106 m3 between 1972-2007.
基金supported by the National Key Research and Development Program of China(NO.2016YFC1402610).
文摘Based on the observation data from China coastal marine stations,the key indicators of marine climate along China coast were explored,including sea surface t emperature(SST),sea level and sea ice.Results show that:(a)The SST along China coast continues rising and increased by 0.25℃/decade during 1980-2019,the warming accelerated significantly after 2011 and it has been well above normal for five consecutive years since 2015.In 2019,the average SST along China coast was 1.1℃ higher than normal(with 1981-2010 taken as a reference period),ranking the highest since 1980.Besides,the SST extremes have been explored based on four long-term marine stations for the period 1960-2019.(b)Sea level along China coast continues to rise at an accelerated rate.The mean sea level rise rate along China Coast was about 2.4 mm/yr during 1960-2019,3.4 mm/yr during 1980-2019,and 3.9 mm/yr during 1993-2019,with significant regional differences.The relatively stronger sea level rise trends were observed along the coastal waters of the Bohai Bay,the Laizhou Bay,the Yangtze River Estuary,the Pearl River Estuary,and the Hainan Island,respectively.Besides,the extreme sea levels along China coast showed an obvious upward trend from 1980 to 2019.During this period,the annual rise rate of extreme high water level along China coast was 4.4 mm/yr,and had obvious regional characteristics,with the highest rate of 9.9 mm/yr observed at Yantai of Shandong Province,(c)The annual sea ice period and sea ice cover of the Bohai Sea(BS)decreased substantially during 1963-2019 by 0.7-1.3 days/yr and 45-59%/yr,respectively,and the decrease rate of ice cover is larger in the north than that in the south.2019 was the year of light icing.
文摘Scattering of surface waves by the edge of a small undulation on a porous bed in an ocean of finite depth, where the free surface has an ice-cover being modelled as an elastic plate of very small thickness, is investigated within the framework of linearized water wave theory. The effect of surface tension at the surface below the ice-cover is neglected. There exists only one wave number propagating at just below the ice-cover. A perturbation analysis is employed to solve the boundary value problem governed by Laplace's equation by a method based on Green's integral theorem with the introduction of appropriate Green's function and thereby evaluating the reflection and transmission coefficients approximately up to first order. A patch of sinusoidal ripples is considered as an example and the related coefficients are determined.
基金supported by the National Key R&D Pro-gram of China[grant number 2017YFE0111800]the National Natural Science Foundation of China[grant numbers 41790472 and 41822502]。
文摘Siberia experienced intense heat waves in 2020,and this unusual warming may have caused more wildfires and losses of permafrost than normal,both of which can be devastating to ecosystems.Based on observational data,this paper shows that there was an intense warming trend over Siberia(60°–75°N,70°–130°E)in June during 1979–2020.The linear trend of the June surface air temperature is 0.90℃/10 yr over Siberia,which is much larger than the area with the same latitudes(60°–75°N,0°–360°,trend of 0.46℃/10 yr).The warming over Siberia extends from the surface to about 300 h Pa.Increased geopotential height in the mid-to-upper troposphere plays an important role in shaping the Siberian warming,which favors more shortwave radiation reaching the surface and further heating the overlying atmosphere via upward turbulent heat flux and longwave radiation.The Siberian warming is closely related to Arctic sea-ice decline,especially the sea ice over northern Barents Sea and Kara Sea.Numerical experiments carried out using and atmospheric general circulation model(IAP-AGCM4.1)confirmed the contribution of the Arctic sea-ice decline to the Siberian warming and the related changes in circulations and surface fluxes.
基金This work is partially supported by the Fifth Framework Program of the European Commission,CONVECTION project,Contract N°EVK2-2000 00058.
文摘Space borne radar scatterometers are primarily designed to measure the wind vector over the world ocean; yet they also provide useful information on sea ice type and extent. In this paper, it is shown how the SeaWinds scatterometer can be used to detect new sea ice at the very beginning of its growth. Taking advantage of the very good coverage of the East Greenland Sea by SeaWinds on board the QuikSCAT satellite it has been possible to detect the early stage of formation of the sea ice peninsula, named the Odden, and to monitor its evolution during March 2001. The early sea ice detection has been validated by using RADARSAT Synthetic Aperture Radar scenes. It is also shown that microwave radiometers, such as the Special Sensor Microwave Imager (SSM/I), which are used as standard sensors for sea ice monitoring, do not detect the very early stage of sea ice growth and lag behind new sea ice occurrence by about twelve to twenty four hours.
基金supported by the National Basic Research Program of China(2010CB951901)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA05120703)+2 种基金the National Natural Science Foundation of China(41205051)supported by CEA(Centre dEtudes Atomiques),CNRS(Centre National de la Recherche Scientifique),the EU(European Union)project MOTIF(EVK2-CT-2002-00153)the Programme National d'Etude de la Dynamique du Climat(PNEDC)
文摘In this study,the authors investigated changes in Last Glacial Maximum (LGM) sea surface temperature (SST) simulated by the Paleoclimate Modelling Intercomparison Project (PMIP) multimodels and reconstructed by the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) project,focusing on model-data comparison.The results showed that the PMIP models produced greater ocean cooling in the North Pacific and Tropical Ocean than the MARGO,particularly in the northwestem Pacific,where the modeldata mismatch was larger.All the models failed to capture the anomalous east-west SST gradient in the North Atlantic.In addition,large discrepancies among the models were observed in the mid-latitude ocean,particularly with models in the second phase of the PMIP.Although these models showed better agreement with the MARGO,the latest models in the third phase of the PMIP did not show substantial progresses in simulating LGM ocean surface conditions.That is,improvements in the modeling community are still needed to describe SST for a better understanding of climate during the LGM.
文摘Over the past 100 years, worldwide surface temperatures have increased at an unprecedented rate, contributing to warming of the oceans, melting ice fields and glaciers, and other adverse climatic effects. Southeast Florida's vulnerability derives from its geographic location, low elevation, porous geology, unusual ground and surface water hydrology, subtropical weather patterns, and proximity to the Atlantic Ocean. The region is especially susceptible to sea level rise. After several millennia of stable sea levels prior to the 20th century, sea levels have been rising at accelerating rates due to thermal expansion of the oceans and from land-based ice melt The Everglades ecosystem and the water supplies for southeast Florida are particularly vulnerable as neither can be protected without significant expenditures of public dollars, and even these efforts may not prove to be successful. New approaches may be required to improve the resilience and prolong the sustainability of the region's water resources and ecosystem. The efforts to adapt to sea level changes in both the urban area and ecosystem as outlined herein are date and incident based-climate changes may occur earlier or later so instead of spending limited public dollars early, expenditures can be adjusted given future information.