In order to study vegetation evolution and environmental changes around 2.5 Ma B.P., a total of 146 pollen samples with an average time resolution of 7 000 years were analyzed in the deep-sea record at the depth of 13...In order to study vegetation evolution and environmental changes around 2.5 Ma B.P., a total of 146 pollen samples with an average time resolution of 7 000 years were analyzed in the deep-sea record at the depth of 135 - 95 m (in composition depth) from ODP Site 1143 (9° 22' N, 113° 17' E) in the southern South China Sea. The results show that the pollen influx has a distinct change. During 2.6 - 2.0 Ma B.P., the average value of pollen influx increased evidently compared with that of 3.0 - 2.6 Ma B.P. It shows that the sea level of SCS dropped dramatically around 2.6 Ma B.P., corresponding to the formation of the Northern Hemisphere ice-sheets and the enhancement of the East Asian Monsoon. The pollen influx variations reflect the glacial-interglacial cycles corresponding with the deep-sea oxygen isotope curve and indicate that the sea level of SCS rose and dropped many times after 2.6 Ma B.P. The spectrum analysis results of pollen influx show that there are cycles at 0.1Ma (eccentricity) and 46.9 ka (obliquity) during 3.0 - 2.0 Ma B.P.展开更多
[Objective] The countermeasure on the number of fructification of Spartina alterniflora in the period of sexual reproduction and the component of seed yielding construction was explored.[Method] The Spartina altemiflo...[Objective] The countermeasure on the number of fructification of Spartina alterniflora in the period of sexual reproduction and the component of seed yielding construction was explored.[Method] The Spartina altemiflora in Mangroves conservation zone located at Hepu of Guangxi being taken as experimental material, its morphological and quantitative characteristics, as well as the weight of 100 full seeds at maturity stage in three different growth conditions( clay, loam and sand) were studied. [ Results] The results showed that Spartina alterniflora had the best growth pattern in the loam. The morphological factors of fructification of S. altemiflora grown in sand were larger then in others. In the three growth conditions the order of quantitative characteristics of fructification of S. alterniflora was clay 〉 sand 〉 loam and the seeds in spikelet at top position were more maturity than those at the button position. [ Conclusion] In good condition, the Spartina altemiflora growth was vigor but the ratio of seed-setting was low.展开更多
Using the meteorological data and geographical information during January-March(1961-2010) accumulated by 18 stations of Hainan,a suitability zoning map for thermo-sensitive genetic male sterility(TGMS) rice was m...Using the meteorological data and geographical information during January-March(1961-2010) accumulated by 18 stations of Hainan,a suitability zoning map for thermo-sensitive genetic male sterility(TGMS) rice was made by GIS technology based on temperature indicators required by TGMS rice during fertility sensitive period and heading-flowering period,aiming to provide reasonable layout and scientific basis for sustainable development of TGMS rice in Hainan Island under the background of global warming.The results indicated that the suitable planting zones covered the south regions of Wuzhishan,Jianfengling and Diaoluoshan;subordinate suitable zones expanded northward to central parts of Wuzhishan,Dongfang,Changjiang,Qiongzhong and southern parts of Wanning;the other regions were unsuitable for breeding.展开更多
A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global cli-mate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear mode...A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global cli-mate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear model is discussed. Firstly, by introducing first scale, the zeroth order approximate solution of the model is obtained. Sec-ondly, by using the multi-scales, the first order approximate equation of the model is found. Finally, second order ap-proximate equation is formed to eliminate the secular terms, and a uniformly valid asymptotic expansion of solution is decided. The multi-scales solving method is an analytic method which can be used to analyze operation sequentially. And then we can also study the diversified qualitative and quantitative behaviors for corresponding physical quantities. This paper aims at providing a valid method for solving a box model of the nonlinear equation.展开更多
Climatological mean and annual variations of Chlorophyll-a (Chl-a) distribution, sea surface wind (SSW), and sea surface temperature (SST) from 1998 to 2008 were analyzed in the middle of the South China Sea (...Climatological mean and annual variations of Chlorophyll-a (Chl-a) distribution, sea surface wind (SSW), and sea surface temperature (SST) from 1998 to 2008 were analyzed in the middle of the South China Sea (SCS), focusing on the typical region off the east coast of Vietnam (8.5-14°N, 109.5-114°E). Based on remote sensing data and SCS summer monsoon index (SCSSMI) data, high Chl-a concentrations in the middle of the SCS in the southwest summer monsoon season (June-September) may be related to strong Ekman pumping and strong wind stress. The maximum of the monthly averaged cli- matological Chl-a in the summer appeared in August. According to the annual variation, there was a significant negative correlation (r = -0.42) between the SCSSMI and SST, a strongly positive correlation (r=0.61) between the SCSSMI and Chl-a, and a strongly negative correlation (r = -0.74) between the SST and Chl-a in the typical region off the east coast of Vietnam during 1998-2008. Due to the E1 Nifio event specifically, the phenomena of a low Chl-a concentration, high SST and weak SCSSMI were extremely predominant in the summer of 1998. These relationships imply that the SCSSMI associated with the SST could be used to predict the annual variability of summer Chl-a in the SCS.展开更多
By using 40-year NCEP reanalysis daily data (1958-1997), we have analyzed the climatic characteristics of summer monsoon onset in the South China Sea (105E ~ 120E, 5N ~ 20N, to be simplified as SCS in the text followe...By using 40-year NCEP reanalysis daily data (1958-1997), we have analyzed the climatic characteristics of summer monsoon onset in the South China Sea (105E ~ 120E, 5N ~ 20N, to be simplified as SCS in the text followed) pentad by pentad (5 days). According to our new definition, in the monsoon area of the SCS two of the following conditions should be satisfied: 1) At 850hPa, the southwest winds should be greater than 2m/s. 2) At 850 hPa, seq should be greater than 335K. The new definition means that the summer monsoon is the southwest winds with high temperature and high moisture. The onset of the SCS summer monsoon is defined to start when one half of the SCS area (105E ~ 120E,5N ~ 20N) is controlled by the summer monsoon. The analyzed results revealed the following: 1) The summer monsoon in the SCS starts to build up abruptly in the 4th pentad in May. 2) The summer monsoon onset in the SCS is resulted from the development and intensification of southwesterly monsoon in the Bay of Bengal. 3) The onset of the summer monsoon and establishment of the summer monsoon rainfall season in the SCS occur simultaneously. 4) During the summer monsoon onset in the SCS, troughs deepen and widen quickly in the lower troposphere of the India; the subtropical high in the Western Pacific moves eastward off the SCS in the middle troposphere; the easterly advances northward over the SCS in the upper troposphere.展开更多
The mixed layer depth (MLD) in the upper ocean is an important physical parameter for describing the upper ocean mixed layer. We analyzed several major factors influencing the climatological mixed layer depth (CMLD...The mixed layer depth (MLD) in the upper ocean is an important physical parameter for describing the upper ocean mixed layer. We analyzed several major factors influencing the climatological mixed layer depth (CMLD), and established a numerical simulation in the South China Sea (SCS) using the Regional Ocean Model System (ROMS) with a high-resolution (1/12~x 1/12~) grid nesting method and 50 vertical layers. Several ideal numerical experiments were tested by modifying the existing sea surface boundary conditions. Especially, we analyzed the sensitivity of the results simulated for the CMLD with factors of sea surface wind stress (SSWS), sea surface net heat flux (SSNHF), and the difference between evaporation and precipitation (DEP). The result shows that of the three factors that change the depth of the CMLD, SSWS is in the first place, when ignoring the impact of SSWS, CMLD will change by 26% on average, and its effect is always to deepen the CMLD; the next comes SSNHF (13%) for deepening the CMLD in October to January and shallowing the CMLD in February to September; and the DEP comes in the third (only 2%). Moreover, we analyzed the temporal and spatial characteristics of CMLD and compared the simulation result with the ARGO observational data. The results indicate that ROMS is applicable for studying CMLD in the SCS area.展开更多
Tropical cyclones(TCs)in the South China Sea(SCS)cause serious disasters and loss every year to the coastal and inland areas of southern China.The types of TCs are usually difficult to forecast,and studies on the unde...Tropical cyclones(TCs)in the South China Sea(SCS)cause serious disasters and loss every year to the coastal and inland areas of southern China.The types of TCs are usually difficult to forecast,and studies on the understanding of the TCs affecting the SCS are lacking.In this study,the authors use the TC data during 1965–2017 from two best-track datasets to analyse the climatic characteristics in terms of the frequency,the track activity,and the influencing indexes of the TCs affecting the SCS and investigate the possible causes.The results show that,during 1965–2017,there were 535 TCs affecting the SCS,mainly occurring from June to November of each year,with the annual average frequency exhibiting a significant downward trend.Meanwhile,the frequency of the track activity in most areas of the SCS also demonstrate a remarkable decreasing trend but an increase in the Gulf of Tonkin and the Taiwan Strait.The large-scale environmental anomalous westerlies and the decrease of humidity in the mid-and low-level over the northern part of the SCS are likely the main causes for the decrease in frequency and the track activity.In addition,the analysis using the cyclone activity index shows that the influence of the before mentioned TCs in southern China gradually decreases,while the influence of TCs in the SCS show a decreasing trend during past decades.展开更多
The characteristics of circulation corresponding to two kinds of indices of summer monsoon onset over the South China Sea (SCS) have been discussed using the reanalysis data of the National Centers for Environmental P...The characteristics of circulation corresponding to two kinds of indices of summer monsoon onset over the South China Sea (SCS) have been discussed using the reanalysis data of the National Centers for Environmental Prediction-National Center for Atmospheric Research. It is found that there are two patterns of deep convection that occur at different locations and influence the summer monsoon onset over the SCS. One is over the Asia continent and the western Pacific corresponding to the southwesterly of summer monsoon prevailing over the northern and central part of the SCS, while the other is near the Philippines that affects the westerly summer monsoon as prevailing over the central and southern part of the SCS. Since these two kinds of convection affecting the summer monsoon onset do not always occur together, thus the summer monsoon onset time is different when determined by various indices.展开更多
As an important marginal sea under the influences of both the Changjiang River and the Kuroshio, the East China Sea (ECS) environment is sensitive to both continental and oceanic forcing. Paleoenvironmental records ...As an important marginal sea under the influences of both the Changjiang River and the Kuroshio, the East China Sea (ECS) environment is sensitive to both continental and oceanic forcing. Paleoenvironmental records are essential for understanding the long-term environmental evolution of the ECS and adjacent areas. However, paleo-temperature records from the ECS shelf are currently very limited. In this study, the U^K_37 and TEX86 paleothermometers were used to reconstruct surface and subsurface temperature changes of the mud area southwest of the Cheju Island (Site F10B) in the ECS during the Holocene. The results indicate that temperature changes of F 10B during the early Holocene (11.6-6.2 kyr) are associated with global climate change. During the period of 6.2-2.5 kyr, the similar variability trends of smoothing average of AT (the difference between surface and subsurface temperature) of Site F10B and the strength of the Kuroshio suggest that the Kuroshio influence on the site started around 6.2kyr when the Kuroshio entered the Yellow Sea and continued to 2.5 kyr. During the late Holocene (2.5-1.45 kyr), apparent decreases of U^K_37 sea surface temperature (SST) and AT imply that the direct influence of the Kuroshio was reduced while cold eddy induced by the Kuroshio gradually controlled hydrological conditions of this region around 2.5 kyr.展开更多
The characteristics of temporal and spatial distribution of tropical cyclone frequencies over the South China Sea areas and its affecting factors in the past 50yrs are analyzed based on typhoon data that provided by C...The characteristics of temporal and spatial distribution of tropical cyclone frequencies over the South China Sea areas and its affecting factors in the past 50yrs are analyzed based on typhoon data that provided by CMA and Simple Ocean Data Assimilation (SODA). The results show that the tropical cyclone frequencies from June to October show concentrated geographic distribution, for they mainIy distribute over the SCS area from 15 - 20°N. The characteristics present significant interdecadal changes. The impact of oceanic factors on the tropical cyclone frequencies in the SCS area is mainly realized by La Nina and La Nifia-like events before 1975 but mainly by E1 Nino and E1 Nifio-like events after 1975.展开更多
Information on the palaeoenvironm ent from Late Pleistocene to Holocen e in northwestern Yannan Plateau has been deduced from a study of a 28.81m-long core taken from Napahai Lake.The results from Relative Brightness ...Information on the palaeoenvironm ent from Late Pleistocene to Holocen e in northwestern Yannan Plateau has been deduced from a study of a 28.81m-long core taken from Napahai Lake.The results from Relative Brightness In-dex(RBI )as well as those from the lithological analyses of bulk sediments,total organic carbon and granulometric analy-ses have been used to reconstruct the environmental and climatic evoluti on of the area.The ages were provided by three 14 C datings.The record suggested a climate fluctuation between warm-dry a nd cool-wet from ca.57to 32ka B.P.,which led a shallowing and swamping of the l ake.The water level again increased quickly at ca.32ka B.P.,reached it’ s peak during LGM(Last Glacial Maximum,ca.18-20ka B.P.)and remained relative high until ca.15ka B.P.The high wa-ter level at LGM is attributed to cold-wet conditions.The area experienced an abrupt and unstable climatic ch anges dur-ing the transition period from15to 10ka B.P.with a dominated littoral en vironment.Awarm-dry climate led to the contrac-tion of the lake during the Holocene a nd reed-swamps became dominant.After a minor wet-cool pulse during the L ate Holocene,the modern climate became to be established.展开更多
By using the 40-year NCEP (1958-1997) grid point reanalysis meteorological data, we analyzed the inter-decadal variation on the climatic characteristics of the onset of South China Sea summer monsoon. The results are ...By using the 40-year NCEP (1958-1997) grid point reanalysis meteorological data, we analyzed the inter-decadal variation on the climatic characteristics of the onset of South China Sea summer monsoon. The results are as follows. (1) There was great difference on the onset date of the SCS summer monsoon between the first two decades and the last two decades. It was late on the 6th pentad of May for the first two decades and was on the 4th and 5th pentad of May for the next two decades. (2) Except for the third decade (1978-1987), the establishment of the monsoon rainfall was one to two pentads earlier than the onset of the summer monsoon in all other three decades. (3) The onset of the SCS monsoon is the result of the abrupt development and eastward advancement of the southwesterly monsoon over the Bay of Bengal. The four-decade analysis shows that there were abrupt development of the southwesterly monsoon over the Bay of Bengal between the 3rd and 4th pentad of May, but there was great difference between its eastward movement and its onset intensity. These may have important effect to the earlier or later onset of the SCS summer monsoon. (4) During the onset of the SCS summer monsoon, there were great difference in the upper and lower circulation feature between the first two and the next two decades. At the lower troposphere of the first two decades, the Indian-Burma trough was stronger and the center of the subtropical high was located more eastward. At the upper troposphere, the northward movement of the center of subtropical high was large and located more northward after it landed on the Indo-China Peninsula. After comparison, we can see that the circulation feature of the last two decades was favorable to the establishment and development of the SCS summer monsoon.展开更多
Due to long-term time series and many elements, reanalysis data of National Centers for Environmental Prediction (NCEP) and European Center for MediumRange Weather Forecasts (ECMWF) are widely used in present clim...Due to long-term time series and many elements, reanalysis data of National Centers for Environmental Prediction (NCEP) and European Center for MediumRange Weather Forecasts (ECMWF) are widely used in present climate studies. Even so, there are discrepancies between NCEP and ECMWF reanalysis. Some climate fields may be better reproduced by NCEP than by ECMWF. On the other hand, ECMWF may describe some climate characteristics more realistically than NCEP. Xu et al.pointed out that NCEP data are of uncertainty when used for studying long-term trends of climate change. By comparing temperatures and pressures from NCEP and observation, it can be seen that NCEP data show higher reliability in the east and lower-latitudes of China than in its west and higher latitudes, NCEP temperature is of more reality than pressure and NCEP data after 1979 are closer to the observations than before. Yang et al.also revealed some serious problems of NCEP data in the north of subtropical Asia. Regional differences of NCEP data in representation are also explored by other studiest. As for seasonal variability, NCEP simulates relatively real conditions of Chinese summer and annual mean but winter data are relatively bad, as in comparisons of NCEP data wity China surface station observations by Zhao et al.Moreover, Trenberth and Stepaniak showed that ECMWF data had better energy budgets than NCEP data for pure pressure coordinates are adopted by ECMWF. Renfrew et al. compared NCF, P data to ECMWF data in terms of surface fluxes and the results indicate that the time series of surface sensible and latent heating fluxes from ECMWF are 13% and 10% larger than the observations and those from NCEP would be 51% and 27% larger than the observations, respectively. So, Renfrew et al. suggested that it be more appropriate to drive ocean models by ECMWF data. Based on comparisons of multiple elements by some scientists, it seems that ECMWF data are better than NCEP data on global, hemispheric and regional scales. Whereas, reanalysis have big errors in some regions in contrast to observations, especially the variables related to humidity. Since that, researchers should compare the two sets of data and select a better one according to specific problems.展开更多
The aeolianite deposits on Shidao Island of the Xisha Islands,the South China Sea,contain five stages of aeolian biocalcarenites and four paleosols.The aeolian biocalcarenites consist of two sedimentary facies:dune an...The aeolianite deposits on Shidao Island of the Xisha Islands,the South China Sea,contain five stages of aeolian biocalcarenites and four paleosols.The aeolian biocalcarenites consist of two sedimentary facies:dune and interdune deposits.In the dunes,large-scale festoon cross-bedding,humped cross-bedding and high-angle foreset bedding are well developed,and in the interdunes,large-scale flat-bedding and low-angle wedge shaped cross-bedding are well developed.The sedimentary structures and lamella features indicate that the aeolian deposits are driven mainly by the northeast monsoon.The aeolian biocalcarenite and paleosols may reflect the arid and humid climates of the East Asian monsoon,respectively.By comparison with the stalagmite oxygen isotope climosequence of Hulu Cave,Nanjing,we inferred that the aeolianite formed in the last glacial stage,and the paleosols were formed during relatively long-term warm events.展开更多
With NCEP/NCAR reanalysis daily data and SST for 1998, the paper investigates the features of summer monsoon low-frequency oscillation (LFO) over the South China Sea (SCS). Results show that SCS summer monsoon onset i...With NCEP/NCAR reanalysis daily data and SST for 1998, the paper investigates the features of summer monsoon low-frequency oscillation (LFO) over the South China Sea (SCS). Results show that SCS summer monsoon onset is enhanced because of its LFO. Low-frequency (LF) low-level convergence (divergence) region of SCS is in the LF positive (negative) rainfall area. LFO of the SCS region migrates from south to north in the meridian and from west to east in zonal direction. LF divergence of SCS is vertically compensating to each other between high and low level.展开更多
While climate is an important factor attracting tourists to certain destinations,it can also motivate people residing in a country with a harsh climate to move to another location.By applying X-12 decompositions and a...While climate is an important factor attracting tourists to certain destinations,it can also motivate people residing in a country with a harsh climate to move to another location.By applying X-12 decompositions and a panel data regression analysis,this study analyzes the pull and push effects of climatic seasonal factors between destination(Hainan Island,China) and source countries(Russia and South Korea).The findings show that climatic seasonal factors have significant pulling and pushing effects on seasonal patterns of tourism demand,with temperature being the main factor.Furthermore,the number of paid vacation days in the source country affects that country's sensitivity to climatic seasonal factors;countries with a higher numbers of paid vacation days are more sensitive to climatic conditions.Lastly,future global warming may causes the aforementioned pull and push effects to abate,which will have an unavoidable influence on tourism industries.展开更多
Monsoon-ocean coupled modes in the South China Sea (SCS) were investigated by a combined singular value decomposition (CSVD) analysis based on sea surface temperature (SST) and sea surface wind stress (SWS) fi...Monsoon-ocean coupled modes in the South China Sea (SCS) were investigated by a combined singular value decomposition (CSVD) analysis based on sea surface temperature (SST) and sea surface wind stress (SWS) fields from SODA (Simple Ocean Data Assimilation) data spanning the period of 1950-1999. The coupled fields achieved the maximum correlation when the SST lagged SWS by one month, indicating that the SCS coupled system mainly reflected the response of the SST to monsoon forcing. Three significant coupled modes were found in the SCS, accounting for more than 80% of the cumulative squared covariance fraction. The first three SST spatial patterns from CSVD were: (Ⅰ) the monopole pattern along the isobaths in the SCS central basin; (Ⅱ) the north-south dipole pattern; and (Ⅲ) the west-east seesaw pattern. The expansion coefficient of the SST leading mode showed interdecadal and interannual variability and correlation with the Indo-Pacific warm pool (IPWP), suggesting that the SCS belongs to part of the IPWP at interannual and interdecadal time scales. The second mode had a lower correlation coefficient with the warm pool index because its main period was at intra-annual time scales instead of the interannual and interdecadal scales with the warm pools. The third mode had similar periods to those of the leading mode, but lagged the eastern Indian Ocean warm pool (EIWP) and western Pacific warm pool (WPWP) by five months and one year respectively, implying that the SCS response to the warm pool variation occurred from the western Pacific to the eastern Indian Ocean, which might have been related to the variation of Indonesian throughflow. All three modes in the SCS had more significant correlations with the EIWP, which means the SCS SST varied much more coherently with the EIWP than the WPWP, suggesting that the SCS belongs mostly to part of the EIWP. The expansion coefficients of the SCS SST modes all had negative correlations with the Nino3 index, which they lag by several months, indicating a remote response of SCS SST variability to the El Nifio events.展开更多
Land use and land cover change(LUCC)is one of the important human forcing on climate.However,it is difficult to infer how LUCC will affect climate in the future from the effects of previous LUCC on regional climates i...Land use and land cover change(LUCC)is one of the important human forcing on climate.However,it is difficult to infer how LUCC will affect climate in the future from the effects of previous LUCC on regional climates in the past.Thus,based on the land cover data recommended by the Coupled Model Intercomparison Project Phase 5(CMIP5),a regional climate model(Reg CM4)was used to investigate the climate effects of future land use change over China.Two 15-year simulations(2036–2050),one with the current land use data and the other with future land cover scenario(2050)were conducted.It is noted that future LUCC in China is mainly characterized by the transition from the grassland to the forest.Results suggest that the magnitudes and ranges of the changes in temperature and precipitation caused by future LUCC show evident seasonality,which are more prominent in summer and autumn.Significant response of climate to future LUCC mainly happens in Northeast China,North China,the Hetao Area,Eastern Qinghai-Tibetan Plateau and South China.Further investigation shows that future LUCC can also produce significant impacts on the atmospheric circulation.LUCC results in abnormal southwesterly wind over extensive areas from the Indian peninsula to the coasts of the South China Sea and South China through the Bay of Bengal.Furthermore,Indian tropical southwest monsoons and South Sea southwest monsoons will both be strong,and the abnormal water vapor convergence from the South China Sea and the Indian Ocean will result in more precipitation in South China.展开更多
基金the National Natural Science Foundation of China projects (40371116) the National Major Basic Research Program of China (G200078502).
文摘In order to study vegetation evolution and environmental changes around 2.5 Ma B.P., a total of 146 pollen samples with an average time resolution of 7 000 years were analyzed in the deep-sea record at the depth of 135 - 95 m (in composition depth) from ODP Site 1143 (9° 22' N, 113° 17' E) in the southern South China Sea. The results show that the pollen influx has a distinct change. During 2.6 - 2.0 Ma B.P., the average value of pollen influx increased evidently compared with that of 3.0 - 2.6 Ma B.P. It shows that the sea level of SCS dropped dramatically around 2.6 Ma B.P., corresponding to the formation of the Northern Hemisphere ice-sheets and the enhancement of the East Asian Monsoon. The pollen influx variations reflect the glacial-interglacial cycles corresponding with the deep-sea oxygen isotope curve and indicate that the sea level of SCS rose and dropped many times after 2.6 Ma B.P. The spectrum analysis results of pollen influx show that there are cycles at 0.1Ma (eccentricity) and 46.9 ka (obliquity) during 3.0 - 2.0 Ma B.P.
基金Supported by the National Natural Science Foundation of China(30660036 )the Natural Science Foundation of Guangxi Province(0728096) Project of Graduate Student Education Innovation ofGuangxi (2008106020907M266)~~
文摘[Objective] The countermeasure on the number of fructification of Spartina alterniflora in the period of sexual reproduction and the component of seed yielding construction was explored.[Method] The Spartina altemiflora in Mangroves conservation zone located at Hepu of Guangxi being taken as experimental material, its morphological and quantitative characteristics, as well as the weight of 100 full seeds at maturity stage in three different growth conditions( clay, loam and sand) were studied. [ Results] The results showed that Spartina alterniflora had the best growth pattern in the loam. The morphological factors of fructification of S. altemiflora grown in sand were larger then in others. In the three growth conditions the order of quantitative characteristics of fructification of S. alterniflora was clay 〉 sand 〉 loam and the seeds in spikelet at top position were more maturity than those at the button position. [ Conclusion] In good condition, the Spartina altemiflora growth was vigor but the ratio of seed-setting was low.
基金Supported by the Project of Meteorological Service Website Construction for HainanBreeding(Qiong Nong Ji Cai No.[2013]18 of Hainan Provincial Department of Agriculture)~~
文摘Using the meteorological data and geographical information during January-March(1961-2010) accumulated by 18 stations of Hainan,a suitability zoning map for thermo-sensitive genetic male sterility(TGMS) rice was made by GIS technology based on temperature indicators required by TGMS rice during fertility sensitive period and heading-flowering period,aiming to provide reasonable layout and scientific basis for sustainable development of TGMS rice in Hainan Island under the background of global warming.The results indicated that the suitable planting zones covered the south regions of Wuzhishan,Jianfengling and Diaoluoshan;subordinate suitable zones expanded northward to central parts of Wuzhishan,Dongfang,Changjiang,Qiongzhong and southern parts of Wanning;the other regions were unsuitable for breeding.
基金Under the auspices of National Natural Science Foundation of China (No. 40676016, No. 10471039)National Key Project for Basics Research (No. 2003CB415101-03, No. 2004CB418304)+1 种基金Key Project of Chinese Academy of Sciences (No. KZCX3-SW-221)E-Insitutes of Shanghai Municipal Education Commission (No. E03004)
文摘A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global cli-mate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear model is discussed. Firstly, by introducing first scale, the zeroth order approximate solution of the model is obtained. Sec-ondly, by using the multi-scales, the first order approximate equation of the model is found. Finally, second order ap-proximate equation is formed to eliminate the secular terms, and a uniformly valid asymptotic expansion of solution is decided. The multi-scales solving method is an analytic method which can be used to analyze operation sequentially. And then we can also study the diversified qualitative and quantitative behaviors for corresponding physical quantities. This paper aims at providing a valid method for solving a box model of the nonlinear equation.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KZCX2-YW-Q11-04 and KZCX2-YW-QN514)the National Basic Research Program of China (Grant Nos. 2007CB816004 and 2012CB417402)the National Natural Science Foundation of China (Grant No. 41075041)
文摘Climatological mean and annual variations of Chlorophyll-a (Chl-a) distribution, sea surface wind (SSW), and sea surface temperature (SST) from 1998 to 2008 were analyzed in the middle of the South China Sea (SCS), focusing on the typical region off the east coast of Vietnam (8.5-14°N, 109.5-114°E). Based on remote sensing data and SCS summer monsoon index (SCSSMI) data, high Chl-a concentrations in the middle of the SCS in the southwest summer monsoon season (June-September) may be related to strong Ekman pumping and strong wind stress. The maximum of the monthly averaged cli- matological Chl-a in the summer appeared in August. According to the annual variation, there was a significant negative correlation (r = -0.42) between the SCSSMI and SST, a strongly positive correlation (r=0.61) between the SCSSMI and Chl-a, and a strongly negative correlation (r = -0.74) between the SST and Chl-a in the typical region off the east coast of Vietnam during 1998-2008. Due to the E1 Nifio event specifically, the phenomena of a low Chl-a concentration, high SST and weak SCSSMI were extremely predominant in the summer of 1998. These relationships imply that the SCSSMI associated with the SST could be used to predict the annual variability of summer Chl-a in the SCS.
基金National Scaling Project A The Scientific Experiment on South China Sea Monsoon
文摘By using 40-year NCEP reanalysis daily data (1958-1997), we have analyzed the climatic characteristics of summer monsoon onset in the South China Sea (105E ~ 120E, 5N ~ 20N, to be simplified as SCS in the text followed) pentad by pentad (5 days). According to our new definition, in the monsoon area of the SCS two of the following conditions should be satisfied: 1) At 850hPa, the southwest winds should be greater than 2m/s. 2) At 850 hPa, seq should be greater than 335K. The new definition means that the summer monsoon is the southwest winds with high temperature and high moisture. The onset of the SCS summer monsoon is defined to start when one half of the SCS area (105E ~ 120E,5N ~ 20N) is controlled by the summer monsoon. The analyzed results revealed the following: 1) The summer monsoon in the SCS starts to build up abruptly in the 4th pentad in May. 2) The summer monsoon onset in the SCS is resulted from the development and intensification of southwesterly monsoon in the Bay of Bengal. 3) The onset of the summer monsoon and establishment of the summer monsoon rainfall season in the SCS occur simultaneously. 4) During the summer monsoon onset in the SCS, troughs deepen and widen quickly in the lower troposphere of the India; the subtropical high in the Western Pacific moves eastward off the SCS in the middle troposphere; the easterly advances northward over the SCS in the upper troposphere.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX1-YW-12-01)the National Natural Science Foundation of China (No.40821004),the National Natural Science Foundation of China (No.40806008)and the High Performance Computing Center,IOCAS
文摘The mixed layer depth (MLD) in the upper ocean is an important physical parameter for describing the upper ocean mixed layer. We analyzed several major factors influencing the climatological mixed layer depth (CMLD), and established a numerical simulation in the South China Sea (SCS) using the Regional Ocean Model System (ROMS) with a high-resolution (1/12~x 1/12~) grid nesting method and 50 vertical layers. Several ideal numerical experiments were tested by modifying the existing sea surface boundary conditions. Especially, we analyzed the sensitivity of the results simulated for the CMLD with factors of sea surface wind stress (SSWS), sea surface net heat flux (SSNHF), and the difference between evaporation and precipitation (DEP). The result shows that of the three factors that change the depth of the CMLD, SSWS is in the first place, when ignoring the impact of SSWS, CMLD will change by 26% on average, and its effect is always to deepen the CMLD; the next comes SSNHF (13%) for deepening the CMLD in October to January and shallowing the CMLD in February to September; and the DEP comes in the third (only 2%). Moreover, we analyzed the temporal and spatial characteristics of CMLD and compared the simulation result with the ARGO observational data. The results indicate that ROMS is applicable for studying CMLD in the SCS area.
基金This work was jointly supported by General Project of Technological Innovation and Application Demonstration of Chongqing Municipality[cstc2018jscx-msybX0165]Special Project for Development of Key Technology for Meteorological Forecast Service of China Meteorological Administration[YBGJXM(2018)04-08]+1 种基金National Natural Science Foundation of China[41875111]Innovation Team Project of Intelligent Meteorological Technology of Chongqing Meteorological Bureau[ZHCXTD-201804].
文摘Tropical cyclones(TCs)in the South China Sea(SCS)cause serious disasters and loss every year to the coastal and inland areas of southern China.The types of TCs are usually difficult to forecast,and studies on the understanding of the TCs affecting the SCS are lacking.In this study,the authors use the TC data during 1965–2017 from two best-track datasets to analyse the climatic characteristics in terms of the frequency,the track activity,and the influencing indexes of the TCs affecting the SCS and investigate the possible causes.The results show that,during 1965–2017,there were 535 TCs affecting the SCS,mainly occurring from June to November of each year,with the annual average frequency exhibiting a significant downward trend.Meanwhile,the frequency of the track activity in most areas of the SCS also demonstrate a remarkable decreasing trend but an increase in the Gulf of Tonkin and the Taiwan Strait.The large-scale environmental anomalous westerlies and the decrease of humidity in the mid-and low-level over the northern part of the SCS are likely the main causes for the decrease in frequency and the track activity.In addition,the analysis using the cyclone activity index shows that the influence of the before mentioned TCs in southern China gradually decreases,while the influence of TCs in the SCS show a decreasing trend during past decades.
基金The authors appreciate the support for this work from China Ministry of Education and the Key Laboratory for Tropical Marine Environmental Dynamics(LED)of South China Sea Institute of Oceanology,Chinese Acadermy of Sciences(via KECX2-205).
文摘The characteristics of circulation corresponding to two kinds of indices of summer monsoon onset over the South China Sea (SCS) have been discussed using the reanalysis data of the National Centers for Environmental Prediction-National Center for Atmospheric Research. It is found that there are two patterns of deep convection that occur at different locations and influence the summer monsoon onset over the SCS. One is over the Asia continent and the western Pacific corresponding to the southwesterly of summer monsoon prevailing over the northern and central part of the SCS, while the other is near the Philippines that affects the westerly summer monsoon as prevailing over the central and southern part of the SCS. Since these two kinds of convection affecting the summer monsoon onset do not always occur together, thus the summer monsoon onset time is different when determined by various indices.
基金supported by the National Basic Research Program of China(973 Program 2010CB428901)the National Natural Science Foundation of China(Grant Nos.41221004,41276068)the ‘111’ Project
文摘As an important marginal sea under the influences of both the Changjiang River and the Kuroshio, the East China Sea (ECS) environment is sensitive to both continental and oceanic forcing. Paleoenvironmental records are essential for understanding the long-term environmental evolution of the ECS and adjacent areas. However, paleo-temperature records from the ECS shelf are currently very limited. In this study, the U^K_37 and TEX86 paleothermometers were used to reconstruct surface and subsurface temperature changes of the mud area southwest of the Cheju Island (Site F10B) in the ECS during the Holocene. The results indicate that temperature changes of F 10B during the early Holocene (11.6-6.2 kyr) are associated with global climate change. During the period of 6.2-2.5 kyr, the similar variability trends of smoothing average of AT (the difference between surface and subsurface temperature) of Site F10B and the strength of the Kuroshio suggest that the Kuroshio influence on the site started around 6.2kyr when the Kuroshio entered the Yellow Sea and continued to 2.5 kyr. During the late Holocene (2.5-1.45 kyr), apparent decreases of U^K_37 sea surface temperature (SST) and AT imply that the direct influence of the Kuroshio was reduced while cold eddy induced by the Kuroshio gradually controlled hydrological conditions of this region around 2.5 kyr.
基金Research on Techniques of Predicting the Prospects of Drought and Flood Years inGuangdong – a project of the Science and Technology Plan of Guangdong Province (2005B32601007)Experiments with the Coupling between Typhoons, Waves and Storm Surges and Pre-estimation of Typhoon-inflicted Dagames, a project of the Research Fund for Tropical Oceanic and Meteorological Science
文摘The characteristics of temporal and spatial distribution of tropical cyclone frequencies over the South China Sea areas and its affecting factors in the past 50yrs are analyzed based on typhoon data that provided by CMA and Simple Ocean Data Assimilation (SODA). The results show that the tropical cyclone frequencies from June to October show concentrated geographic distribution, for they mainIy distribute over the SCS area from 15 - 20°N. The characteristics present significant interdecadal changes. The impact of oceanic factors on the tropical cyclone frequencies in the SCS area is mainly realized by La Nina and La Nifia-like events before 1975 but mainly by E1 Nino and E1 Nifio-like events after 1975.
文摘Information on the palaeoenvironm ent from Late Pleistocene to Holocen e in northwestern Yannan Plateau has been deduced from a study of a 28.81m-long core taken from Napahai Lake.The results from Relative Brightness In-dex(RBI )as well as those from the lithological analyses of bulk sediments,total organic carbon and granulometric analy-ses have been used to reconstruct the environmental and climatic evoluti on of the area.The ages were provided by three 14 C datings.The record suggested a climate fluctuation between warm-dry a nd cool-wet from ca.57to 32ka B.P.,which led a shallowing and swamping of the l ake.The water level again increased quickly at ca.32ka B.P.,reached it’ s peak during LGM(Last Glacial Maximum,ca.18-20ka B.P.)and remained relative high until ca.15ka B.P.The high wa-ter level at LGM is attributed to cold-wet conditions.The area experienced an abrupt and unstable climatic ch anges dur-ing the transition period from15to 10ka B.P.with a dominated littoral en vironment.Awarm-dry climate led to the contrac-tion of the lake during the Holocene a nd reed-swamps became dominant.After a minor wet-cool pulse during the L ate Holocene,the modern climate became to be established.
基金National Scaling Project A The Scientific Experiment on South China Sea Monsoon Part I from the fund for (G1998040900)
文摘By using the 40-year NCEP (1958-1997) grid point reanalysis meteorological data, we analyzed the inter-decadal variation on the climatic characteristics of the onset of South China Sea summer monsoon. The results are as follows. (1) There was great difference on the onset date of the SCS summer monsoon between the first two decades and the last two decades. It was late on the 6th pentad of May for the first two decades and was on the 4th and 5th pentad of May for the next two decades. (2) Except for the third decade (1978-1987), the establishment of the monsoon rainfall was one to two pentads earlier than the onset of the summer monsoon in all other three decades. (3) The onset of the SCS monsoon is the result of the abrupt development and eastward advancement of the southwesterly monsoon over the Bay of Bengal. The four-decade analysis shows that there were abrupt development of the southwesterly monsoon over the Bay of Bengal between the 3rd and 4th pentad of May, but there was great difference between its eastward movement and its onset intensity. These may have important effect to the earlier or later onset of the SCS summer monsoon. (4) During the onset of the SCS summer monsoon, there were great difference in the upper and lower circulation feature between the first two and the next two decades. At the lower troposphere of the first two decades, the Indian-Burma trough was stronger and the center of the subtropical high was located more eastward. At the upper troposphere, the northward movement of the center of subtropical high was large and located more northward after it landed on the Indo-China Peninsula. After comparison, we can see that the circulation feature of the last two decades was favorable to the establishment and development of the SCS summer monsoon.
基金Natural Science Foundation of China (40505019) Natural Science Foundation of GuangdongProvince (5300001) Open Foundation of Guangzhou Institute of Tropical and Marine Meteorology,CMA
文摘Due to long-term time series and many elements, reanalysis data of National Centers for Environmental Prediction (NCEP) and European Center for MediumRange Weather Forecasts (ECMWF) are widely used in present climate studies. Even so, there are discrepancies between NCEP and ECMWF reanalysis. Some climate fields may be better reproduced by NCEP than by ECMWF. On the other hand, ECMWF may describe some climate characteristics more realistically than NCEP. Xu et al.pointed out that NCEP data are of uncertainty when used for studying long-term trends of climate change. By comparing temperatures and pressures from NCEP and observation, it can be seen that NCEP data show higher reliability in the east and lower-latitudes of China than in its west and higher latitudes, NCEP temperature is of more reality than pressure and NCEP data after 1979 are closer to the observations than before. Yang et al.also revealed some serious problems of NCEP data in the north of subtropical Asia. Regional differences of NCEP data in representation are also explored by other studiest. As for seasonal variability, NCEP simulates relatively real conditions of Chinese summer and annual mean but winter data are relatively bad, as in comparisons of NCEP data wity China surface station observations by Zhao et al.Moreover, Trenberth and Stepaniak showed that ECMWF data had better energy budgets than NCEP data for pure pressure coordinates are adopted by ECMWF. Renfrew et al. compared NCF, P data to ECMWF data in terms of surface fluxes and the results indicate that the time series of surface sensible and latent heating fluxes from ECMWF are 13% and 10% larger than the observations and those from NCEP would be 51% and 27% larger than the observations, respectively. So, Renfrew et al. suggested that it be more appropriate to drive ocean models by ECMWF data. Based on comparisons of multiple elements by some scientists, it seems that ECMWF data are better than NCEP data on global, hemispheric and regional scales. Whereas, reanalysis have big errors in some regions in contrast to observations, especially the variables related to humidity. Since that, researchers should compare the two sets of data and select a better one according to specific problems.
基金Supported by the National Basic Research Program of China (973 Program) (No. 2009CB219406)the Knowledge Innovation Program of CAS (KZCX2-YW-229)National Science & Technology Major Project (No. 2008zx05025-003-03)
文摘The aeolianite deposits on Shidao Island of the Xisha Islands,the South China Sea,contain five stages of aeolian biocalcarenites and four paleosols.The aeolian biocalcarenites consist of two sedimentary facies:dune and interdune deposits.In the dunes,large-scale festoon cross-bedding,humped cross-bedding and high-angle foreset bedding are well developed,and in the interdunes,large-scale flat-bedding and low-angle wedge shaped cross-bedding are well developed.The sedimentary structures and lamella features indicate that the aeolian deposits are driven mainly by the northeast monsoon.The aeolian biocalcarenite and paleosols may reflect the arid and humid climates of the East Asian monsoon,respectively.By comparison with the stalagmite oxygen isotope climosequence of Hulu Cave,Nanjing,we inferred that the aeolianite formed in the last glacial stage,and the paleosols were formed during relatively long-term warm events.
基金National Project of Technology (2001BA607B) Start-up Foundation of Ph.D. of the Chinese Academy of Meteorological Sciences
文摘With NCEP/NCAR reanalysis daily data and SST for 1998, the paper investigates the features of summer monsoon low-frequency oscillation (LFO) over the South China Sea (SCS). Results show that SCS summer monsoon onset is enhanced because of its LFO. Low-frequency (LF) low-level convergence (divergence) region of SCS is in the LF positive (negative) rainfall area. LFO of the SCS region migrates from south to north in the meridian and from west to east in zonal direction. LF divergence of SCS is vertically compensating to each other between high and low level.
基金Under the auspices of the National Natural Science Foundation of China(No.41430528,41671036)Ministry of Education of Humanities,Social Science Project(No.16YJC790060)+2 种基金Social Science Planning Annual Project of Sichuan,China(No.SC15B046)Soft Science Research Project of Sichuan,China(No.2015ZR0225)Fundamental Research Funds for the Central Universities(No.skqy201639)
文摘While climate is an important factor attracting tourists to certain destinations,it can also motivate people residing in a country with a harsh climate to move to another location.By applying X-12 decompositions and a panel data regression analysis,this study analyzes the pull and push effects of climatic seasonal factors between destination(Hainan Island,China) and source countries(Russia and South Korea).The findings show that climatic seasonal factors have significant pulling and pushing effects on seasonal patterns of tourism demand,with temperature being the main factor.Furthermore,the number of paid vacation days in the source country affects that country's sensitivity to climatic seasonal factors;countries with a higher numbers of paid vacation days are more sensitive to climatic conditions.Lastly,future global warming may causes the aforementioned pull and push effects to abate,which will have an unavoidable influence on tourism industries.
基金supported by the projects of Program 973(No.2006CB403603)Program for New Century Excellent Talents in University(No.NCET-05-0591)+1 种基金the National Natural Science Foundation of China(No.40305009)Shandong Taishan Scholar Foundation.
文摘Monsoon-ocean coupled modes in the South China Sea (SCS) were investigated by a combined singular value decomposition (CSVD) analysis based on sea surface temperature (SST) and sea surface wind stress (SWS) fields from SODA (Simple Ocean Data Assimilation) data spanning the period of 1950-1999. The coupled fields achieved the maximum correlation when the SST lagged SWS by one month, indicating that the SCS coupled system mainly reflected the response of the SST to monsoon forcing. Three significant coupled modes were found in the SCS, accounting for more than 80% of the cumulative squared covariance fraction. The first three SST spatial patterns from CSVD were: (Ⅰ) the monopole pattern along the isobaths in the SCS central basin; (Ⅱ) the north-south dipole pattern; and (Ⅲ) the west-east seesaw pattern. The expansion coefficient of the SST leading mode showed interdecadal and interannual variability and correlation with the Indo-Pacific warm pool (IPWP), suggesting that the SCS belongs to part of the IPWP at interannual and interdecadal time scales. The second mode had a lower correlation coefficient with the warm pool index because its main period was at intra-annual time scales instead of the interannual and interdecadal scales with the warm pools. The third mode had similar periods to those of the leading mode, but lagged the eastern Indian Ocean warm pool (EIWP) and western Pacific warm pool (WPWP) by five months and one year respectively, implying that the SCS response to the warm pool variation occurred from the western Pacific to the eastern Indian Ocean, which might have been related to the variation of Indonesian throughflow. All three modes in the SCS had more significant correlations with the EIWP, which means the SCS SST varied much more coherently with the EIWP than the WPWP, suggesting that the SCS belongs mostly to part of the EIWP. The expansion coefficients of the SCS SST modes all had negative correlations with the Nino3 index, which they lag by several months, indicating a remote response of SCS SST variability to the El Nifio events.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.41475083,41230422)the National Basic Research Program of China(Grant No.2011CB952000)the PriorityAcademic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Land use and land cover change(LUCC)is one of the important human forcing on climate.However,it is difficult to infer how LUCC will affect climate in the future from the effects of previous LUCC on regional climates in the past.Thus,based on the land cover data recommended by the Coupled Model Intercomparison Project Phase 5(CMIP5),a regional climate model(Reg CM4)was used to investigate the climate effects of future land use change over China.Two 15-year simulations(2036–2050),one with the current land use data and the other with future land cover scenario(2050)were conducted.It is noted that future LUCC in China is mainly characterized by the transition from the grassland to the forest.Results suggest that the magnitudes and ranges of the changes in temperature and precipitation caused by future LUCC show evident seasonality,which are more prominent in summer and autumn.Significant response of climate to future LUCC mainly happens in Northeast China,North China,the Hetao Area,Eastern Qinghai-Tibetan Plateau and South China.Further investigation shows that future LUCC can also produce significant impacts on the atmospheric circulation.LUCC results in abnormal southwesterly wind over extensive areas from the Indian peninsula to the coasts of the South China Sea and South China through the Bay of Bengal.Furthermore,Indian tropical southwest monsoons and South Sea southwest monsoons will both be strong,and the abnormal water vapor convergence from the South China Sea and the Indian Ocean will result in more precipitation in South China.