The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of th...The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of the SCS.Early observations have suggested that water enters the SCS in winter but water inflow or outflow in summer is quite controversial.On the basis of hydrographic measurements from CTD along 120° E in the Luzon Strait during the period from September 18 to 20 in 2006,the characteristics of temperature,salinity and density distributions are analyzed.The velocity and volume transport through the Luzon Strait are calculated using the method of dynamic calculation.The major observed results show that water exchanges are mainly from the Pacific to the South China Sea in the upper layer,and the flow is relatively weak and eastward in the deeper layer.The net volume transport of the Luzon Strait during the observation period is westward,amounts to about 3.25 Sv.This result is consistent with historical observations.展开更多
To investigate the annual and interaunual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method wer...To investigate the annual and interaunual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during the period from December 1992 to October 2009. The merged wind data were generated from European Remote Sensing Satellite (ERS)-1/2 Scatterometer, NASA Scatterometer (NSCAT) and NASA's Quick Scatterometer (QuikSCAT) wind products. The first VEOF mode corresponds to a winter-summer mode which accounts for 87.3% of the total variance and represents the East Asian monsoon features. The second mode of VEOF corresponds to a spring-autumn oscil- lation which accounts for 8.3% of the total variance. To analyze the interannual variability, the annual signal was removed from the wind data set and the VEOFs of the residuals were calculated. The temporal mode of the ftrst intcrannual VEOF is correlated with the Southern Oscillation Index (SOI) with a four-month lag. The second temporal interannual VEOF mode is correlated with the SOI with no time lag. The time series of the two interannual VEOFs were decomposed using the HI-IT method and the results also show a correlation between the interannual variability and El Nino-Southern Oscillation (ENSO) events.展开更多
Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using ...Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using the Empirical Orthogonal Function(EOF) method. We find that the SLA variability has two dominant modes. The Sea Level Changing Mode(SLCM) occurs mainly during La Ni?a years, with high SLA extension from west of Luzon to the eastern coast of Vietnam along the central basin of the SCS, and is likely induced by the increment of the ocean heat content. The Anticyclonic Eddy Mode(AEM) occurs mainly during El Ni?o years and appears to be triggered by the negative wind curl anomalies within the central SCS. In addition, the spring high SLA in the western SCS experienced a quasi-decadal change during 1993–2012; in other words, the AEM predominated during 1993–1998 and 2002–2005, while the La Ni?a-related SLCM prevailed during 1999–2001 and 2006–2012. Moreover, we suggest that the accelerated sea level rise in the SCS during 2005–2012 makes the SLCM the leading mode over the past two decades.展开更多
基金Supported by the Knowledge Innovation Project of CAS (No KZCX2-YW-214,the NSFC (No 40806010)the National Basic Research Program of China (973 Program) (No 403603)
文摘The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of the SCS.Early observations have suggested that water enters the SCS in winter but water inflow or outflow in summer is quite controversial.On the basis of hydrographic measurements from CTD along 120° E in the Luzon Strait during the period from September 18 to 20 in 2006,the characteristics of temperature,salinity and density distributions are analyzed.The velocity and volume transport through the Luzon Strait are calculated using the method of dynamic calculation.The major observed results show that water exchanges are mainly from the Pacific to the South China Sea in the upper layer,and the flow is relatively weak and eastward in the deeper layer.The net volume transport of the Luzon Strait during the observation period is westward,amounts to about 3.25 Sv.This result is consistent with historical observations.
基金supported by the National Natural Science Foundation of China through G41006108the Open Research Fund of the Shandong Provincial Key Laboratory of Marine Ecology and Environment & Disaster Prevention and Mitigation through G2011001+1 种基金the Laboratory of Data Analysis and Application, State Oceanic Administration through LDAA-2013-02the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering through G2009586812
文摘To investigate the annual and interaunual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during the period from December 1992 to October 2009. The merged wind data were generated from European Remote Sensing Satellite (ERS)-1/2 Scatterometer, NASA Scatterometer (NSCAT) and NASA's Quick Scatterometer (QuikSCAT) wind products. The first VEOF mode corresponds to a winter-summer mode which accounts for 87.3% of the total variance and represents the East Asian monsoon features. The second mode of VEOF corresponds to a spring-autumn oscil- lation which accounts for 8.3% of the total variance. To analyze the interannual variability, the annual signal was removed from the wind data set and the VEOFs of the residuals were calculated. The temporal mode of the ftrst intcrannual VEOF is correlated with the Southern Oscillation Index (SOI) with a four-month lag. The second temporal interannual VEOF mode is correlated with the SOI with no time lag. The time series of the two interannual VEOFs were decomposed using the HI-IT method and the results also show a correlation between the interannual variability and El Nino-Southern Oscillation (ENSO) events.
基金Supported by the National Natural Science Foundation of China(Nos.41306026,41176025,41176031)the Scientific Research Foundation of the Third Institute of Oceanography,SOA(No.2008014)+2 种基金the Chinese Academy of Sciences Strategic Leading Science and Technology Projects(No.XDA1102030104)the Global Change and Ocean-Atmosphere Interaction(No.GASI-03-01-01-03)the National Special Research Fund for Non-Profit Marine Sector(No.201005005-2)
文摘Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using the Empirical Orthogonal Function(EOF) method. We find that the SLA variability has two dominant modes. The Sea Level Changing Mode(SLCM) occurs mainly during La Ni?a years, with high SLA extension from west of Luzon to the eastern coast of Vietnam along the central basin of the SCS, and is likely induced by the increment of the ocean heat content. The Anticyclonic Eddy Mode(AEM) occurs mainly during El Ni?o years and appears to be triggered by the negative wind curl anomalies within the central SCS. In addition, the spring high SLA in the western SCS experienced a quasi-decadal change during 1993–2012; in other words, the AEM predominated during 1993–1998 and 2002–2005, while the La Ni?a-related SLCM prevailed during 1999–2001 and 2006–2012. Moreover, we suggest that the accelerated sea level rise in the SCS during 2005–2012 makes the SLCM the leading mode over the past two decades.