Cadmium(Cd) mainly derived from anthropogenic emissions can be transported through atmospheric pathway to marine ecosystem,affecting the phytoplankton community and primary productivity.In this study,we identified the...Cadmium(Cd) mainly derived from anthropogenic emissions can be transported through atmospheric pathway to marine ecosystem,affecting the phytoplankton community and primary productivity.In this study,we identified the toxicity threshold of Cd for phytoplankton under seawater conditions of the coastal East China Sea(ECS) through both laboratory and in situ mesocosm incubation experiments.The mesocosm experiment showed that Cd in low concentration(0.003 μg per μg chl a) was conducive to the growth of natural community and increased chl a productivity.In high concentration(0.03 μg per μg chl a) Cd acted as an inhibiting factor which decreased the total chl a productivity.The diatom community was found to be more sensitive to Cd toxicity than dinoflagellate,as the low concentration Cd showed toxicity to diatom but enhanced dinoflagellate growth.We noticed that the soluble Cd estimated from atmosphere deposition to the coastal ECS was below the toxicity threshold and the Cd deposition might promote phytoplankton growth in this region.In our laboratory experiments,adding Cd,similar to aerosol deposition,stimulated the growth of both dominant algal species Prorocentrum donghaiense Lu(dinoflagellate) and Skeletonema costatum(diatom).Adding Cd on a higher level inhibited the growth of both the species,but Skeletonema costatum seemed obviously more sensitive to toxicity.This indicates the potential impact of atmospheric deposition Cd on phytoplankton community succession in the ECS.展开更多
To study population dynamics of marine ciliates in different artificial seawaters (ASW), the population growth dynamics of a common marine ciliate Euplotes vannus were investigated using beef extract media and rice ...To study population dynamics of marine ciliates in different artificial seawaters (ASW), the population growth dynamics of a common marine ciliate Euplotes vannus were investigated using beef extract media and rice media for five types of ASW and natural seawater (NSW). The results show that: (1) the population growth rate was in the order of NSW〉Flack ASW〉Nakamula ASW〉Schmadz ASW〉Oshima ASW〉Subow ASW and was considerably higher in rice media than in beef extract media (apart from Subow ASW); (2) the maximum density of E. vannus in stationary phase in each treatment was ranked as Hack ASW〉Nakamula ASW〉Schmadz ASW〉NSW〉Oshima ASW〉Subow ASW, and was again higher in rice media than in beef extract media (except for Subow ASW); (3) the exponential and stationary phases were longer in rice media than in beef extract media; (4) strains of E. vannus that had been domesticated for 〉1 year in ASW grew significantly slower, with lower maximum density and longer stationary phase than those isolated and maintained in NSW. It was demonstrated that: (1) E. vannus may grow well in Flack, Nakamula and Schmads ASW compared with NSW (mainly in terms of growth rate); and (2) Oshima ASW is the preferred choice for stock cultures of E. vannus, but the ASWs Flack, Nakamula and Schmadz are preferred for mass culture. These findings suggest that these three ASWs are effective for the cultivation of marine protozoa for experimental studies on ecology, toxicology and molecular biology.展开更多
Relationships between microbial communities and geochemical environments are important in marine microbial ecology and biogeochemistry. Although biogeochemical redox stratification has been well documented in marine s...Relationships between microbial communities and geochemical environments are important in marine microbial ecology and biogeochemistry. Although biogeochemical redox stratification has been well documented in marine sediments, its impact on microbial communities remains largely unknown. In this study, we applied denaturing gradient gel electrophoresis (DGGE) and clone library construction to investigate the diversity and stratification of bacterial communities in redox-stratified sandy reef sediments in a microcosm. A total of 88 Operational Taxonomic Units (OTU) were identified from 16S rRNA clone libraries constructed from sandy reef sediments in a laboratory microcosm. They were members of nine phyla and three candidate divisions, including Proteobacteria (Alphas, Beta-, Gamma-, Delta-, and Epsilonproteobacteria), Aetinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Verrucomicrobia, Spirochaetes, and the candidate divisions WS3, SO31 and AO19. The vast majority of these phylotypes are related to clone sequences from other marine sediments, but OTUs of Epsilonproteobacteria and WS3 are reported for the first time from permeable marine sediments. Several other OTUs are potential new bacterial phylotypes because of their low similarity with reference sequences. Results from the 16S rRNA, gene clone sequence analyses suggested that bacterial communities exhibit clear stratification across large redox gradients in these sediments, with the highest diversity found in the anoxic layer (15-25 mm) and the least diversity in the suboxic layer (3-5 mm). Analysis of the nosZ, and amoA gene libraries also indicated the stratification of denitrifiers and nitrifiers, with their highest diversity being in the anoxic and oxic sediment layers, respectively. These results indicated that redox-stratification can affect the distribution of bacterial communities in sandy reef sediments.展开更多
Thirty-five years ago, the idea of a young Qinghai-Tibetan Plateau was proposed based on a comprehensive investigation on the Qinghai-Tibetan Plateau. This hypothesis suggested that the plateau began to rise from a pl...Thirty-five years ago, the idea of a young Qinghai-Tibetan Plateau was proposed based on a comprehensive investigation on the Qinghai-Tibetan Plateau. This hypothesis suggested that the plateau began to rise from a planation surface (relict surface) that was less than 1000 m high formed during the Miocene to Pliocene. The fast uplift, i.e., the Qingzang Movement, began since -3.6 Ma, evidenced by massive molasse deposits around the plateau margin and the synchronous occurrence of faulted basins within the plateau. However, later studies challenged this idea and suggested earlier (8, 14 or 35 Ma) formation of the huge plateau topography. Here we reevaluate the Qingzang Movement on the basis of our previous results and in light of new studies in the recent decades. The plateau margin has been subjected to intensive incision by very large drainages and shows the landscape characteristics of an "infant" stage of the geomorphological cycle. However, these drainages were not formed until 1.7-1.9 Ma; headwater erosion has not yet reached the hinterland of the plateau, so the interior of Tibet is free of significant erosion despite its lofty elevation, and remains an "old stage" landform. If the mean erosion rate is equivalent to the sum of clastic and soluble discharges of the modern rivers draining the Tibetan Plateau, it should have been worn down to a lowland within 8.6 Ma, ignoring tectonic uplift and isostasy. The massive conglomerate around the plateau margin began to deposit at about 3.6 Ma, indicating an increased relief after that time. Furthermore, the Hipparion fauna sites were widely distributed, and elephants, giraffes, and rhinos were abundant in the Qaidam Basin until the early Pliocene. Cenozoic climate change alone is not able to account for the dense occurrence of Hipparion fauna, unless the paleo-elevation of Tibet was lowered. The rise of Tibet since the Qingzang Movement has had a great influence on the Asian interior aridification.展开更多
基金sponsored by the National Natural Science Foundation of China (41375141)National Basic Research Program of China (2014CB953700)SRF for ROCS,SEM,and Shanghai Science and Technology Committee (12DJ1400102)
文摘Cadmium(Cd) mainly derived from anthropogenic emissions can be transported through atmospheric pathway to marine ecosystem,affecting the phytoplankton community and primary productivity.In this study,we identified the toxicity threshold of Cd for phytoplankton under seawater conditions of the coastal East China Sea(ECS) through both laboratory and in situ mesocosm incubation experiments.The mesocosm experiment showed that Cd in low concentration(0.003 μg per μg chl a) was conducive to the growth of natural community and increased chl a productivity.In high concentration(0.03 μg per μg chl a) Cd acted as an inhibiting factor which decreased the total chl a productivity.The diatom community was found to be more sensitive to Cd toxicity than dinoflagellate,as the low concentration Cd showed toxicity to diatom but enhanced dinoflagellate growth.We noticed that the soluble Cd estimated from atmosphere deposition to the coastal ECS was below the toxicity threshold and the Cd deposition might promote phytoplankton growth in this region.In our laboratory experiments,adding Cd,similar to aerosol deposition,stimulated the growth of both dominant algal species Prorocentrum donghaiense Lu(dinoflagellate) and Skeletonema costatum(diatom).Adding Cd on a higher level inhibited the growth of both the species,but Skeletonema costatum seemed obviously more sensitive to toxicity.This indicates the potential impact of atmospheric deposition Cd on phytoplankton community succession in the ECS.
基金Supported by the National Natural Science foundation of China (Nos.41076089,40976075)a Post-Doctoral Fellowship by Inha University awarded to XU Henglong+1 种基金a Grant from the Center of Excellence in Biodiversity Research,King Saud Universitythe 111 Project of China (No.B08049)
文摘To study population dynamics of marine ciliates in different artificial seawaters (ASW), the population growth dynamics of a common marine ciliate Euplotes vannus were investigated using beef extract media and rice media for five types of ASW and natural seawater (NSW). The results show that: (1) the population growth rate was in the order of NSW〉Flack ASW〉Nakamula ASW〉Schmadz ASW〉Oshima ASW〉Subow ASW and was considerably higher in rice media than in beef extract media (apart from Subow ASW); (2) the maximum density of E. vannus in stationary phase in each treatment was ranked as Hack ASW〉Nakamula ASW〉Schmadz ASW〉NSW〉Oshima ASW〉Subow ASW, and was again higher in rice media than in beef extract media (except for Subow ASW); (3) the exponential and stationary phases were longer in rice media than in beef extract media; (4) strains of E. vannus that had been domesticated for 〉1 year in ASW grew significantly slower, with lower maximum density and longer stationary phase than those isolated and maintained in NSW. It was demonstrated that: (1) E. vannus may grow well in Flack, Nakamula and Schmads ASW compared with NSW (mainly in terms of growth rate); and (2) Oshima ASW is the preferred choice for stock cultures of E. vannus, but the ASWs Flack, Nakamula and Schmadz are preferred for mass culture. These findings suggest that these three ASWs are effective for the cultivation of marine protozoa for experimental studies on ecology, toxicology and molecular biology.
基金Supported by a NOAA Grant(No.NA04OAR4600196(GW))the microcosm development and operation was supported by the U.S.National Science Foundation(Nos.OCE03-27332 and OCE05-36616(FJS))a project of Shandong Province Higher Education Science and Technology Program(No.J10LC09)
文摘Relationships between microbial communities and geochemical environments are important in marine microbial ecology and biogeochemistry. Although biogeochemical redox stratification has been well documented in marine sediments, its impact on microbial communities remains largely unknown. In this study, we applied denaturing gradient gel electrophoresis (DGGE) and clone library construction to investigate the diversity and stratification of bacterial communities in redox-stratified sandy reef sediments in a microcosm. A total of 88 Operational Taxonomic Units (OTU) were identified from 16S rRNA clone libraries constructed from sandy reef sediments in a laboratory microcosm. They were members of nine phyla and three candidate divisions, including Proteobacteria (Alphas, Beta-, Gamma-, Delta-, and Epsilonproteobacteria), Aetinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Verrucomicrobia, Spirochaetes, and the candidate divisions WS3, SO31 and AO19. The vast majority of these phylotypes are related to clone sequences from other marine sediments, but OTUs of Epsilonproteobacteria and WS3 are reported for the first time from permeable marine sediments. Several other OTUs are potential new bacterial phylotypes because of their low similarity with reference sequences. Results from the 16S rRNA, gene clone sequence analyses suggested that bacterial communities exhibit clear stratification across large redox gradients in these sediments, with the highest diversity found in the anoxic layer (15-25 mm) and the least diversity in the suboxic layer (3-5 mm). Analysis of the nosZ, and amoA gene libraries also indicated the stratification of denitrifiers and nitrifiers, with their highest diversity being in the anoxic and oxic sediment layers, respectively. These results indicated that redox-stratification can affect the distribution of bacterial communities in sandy reef sediments.
基金supported by the National Natural Science Foundation of China(Grant Nos.41330745,41171014&41271017)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Thirty-five years ago, the idea of a young Qinghai-Tibetan Plateau was proposed based on a comprehensive investigation on the Qinghai-Tibetan Plateau. This hypothesis suggested that the plateau began to rise from a planation surface (relict surface) that was less than 1000 m high formed during the Miocene to Pliocene. The fast uplift, i.e., the Qingzang Movement, began since -3.6 Ma, evidenced by massive molasse deposits around the plateau margin and the synchronous occurrence of faulted basins within the plateau. However, later studies challenged this idea and suggested earlier (8, 14 or 35 Ma) formation of the huge plateau topography. Here we reevaluate the Qingzang Movement on the basis of our previous results and in light of new studies in the recent decades. The plateau margin has been subjected to intensive incision by very large drainages and shows the landscape characteristics of an "infant" stage of the geomorphological cycle. However, these drainages were not formed until 1.7-1.9 Ma; headwater erosion has not yet reached the hinterland of the plateau, so the interior of Tibet is free of significant erosion despite its lofty elevation, and remains an "old stage" landform. If the mean erosion rate is equivalent to the sum of clastic and soluble discharges of the modern rivers draining the Tibetan Plateau, it should have been worn down to a lowland within 8.6 Ma, ignoring tectonic uplift and isostasy. The massive conglomerate around the plateau margin began to deposit at about 3.6 Ma, indicating an increased relief after that time. Furthermore, the Hipparion fauna sites were widely distributed, and elephants, giraffes, and rhinos were abundant in the Qaidam Basin until the early Pliocene. Cenozoic climate change alone is not able to account for the dense occurrence of Hipparion fauna, unless the paleo-elevation of Tibet was lowered. The rise of Tibet since the Qingzang Movement has had a great influence on the Asian interior aridification.