A fog threshold method for the detection of sea fog from Multi-function Transport Satellite (MTSAT1R) infrared (IR) channel data is presented.This method uses principle component analysis (PCA),texture analysis,and th...A fog threshold method for the detection of sea fog from Multi-function Transport Satellite (MTSAT1R) infrared (IR) channel data is presented.This method uses principle component analysis (PCA),texture analysis,and threshold detection to extract sea fog information.A heavy sea fog episode that occurred over China's adjacent sea area during 7 8 April 2008 was detected,indicating that the fog threshold method can effectively detect sea fog areas nearly 24 hours a day.MTSAT-1R data from March 2006,June 2007,and April 2008 were processed using the fog threshold method,and sea fog coverage information was compared with the meteorological observation report data from ships.The hit rate,miss rate,and false alarm rate of sea fog detection were 66.1%,27.3%,and 33.9%,respectively.The results show that the fog threshold method can detect the formation,evolution,and dissipation of sea fog events over period of time and that the method has superior temporal and spatial resolution relative to conventional ship observations.In addition,through MTSAT-1R data processing and a statistical analysis of sea fog coverage information for the period from 2006 to 2009,the monthly mean sea fog day frequency,spatial distribution and seasonal variation characteristics of sea fog over China's adjacent sea area were obtained.展开更多
Using hydrographic data covering large areas of ocean for the period from June 21 to July 5 in 2009, we studied the circulation structure in the Luzon Strait area, examined the routes of water exchange between the Sou...Using hydrographic data covering large areas of ocean for the period from June 21 to July 5 in 2009, we studied the circulation structure in the Luzon Strait area, examined the routes of water exchange between the South China Sea (SCS) and the Philippine Sea, and estimated the volume transport through Luzon Strait. We found that the Kuroshio axis follows a e-shaped path slightly east of 121°E in the upper layer. With an increase in depth, the Kuroshio axis became gradually farther from the island of Luzon. To study the water exchange between the Philippine Sea and the SCS, identification of inflows and outflows is necessary. We first identified which flows contributed to the water exchange through Luzon Strait, which differs from the approach taken in previous studies. We determined that the obvious water exchange is in the section of 121°E. The westward inflow from the Philippine Sea into the SCS is 6.39 Sv in volume, and mainly in the 100-500 m layer at 19.5°-20°N (accounting for 4.40 Sv), while the outflow from the SCS into the Philippine Sea is concentrated in the upper 100 m at 19°-20°N and upper 400 m at 21°-21.5°N, and below 240 m at 19°-19.5°N, accounting for 1.07, 3.02 and 3.43 Sv in volume transport, respectively.展开更多
The characteristics of seasonal variation in phytoplankton biomass and dominant species in the Changjiang River Estuary and adjacent seas were discussed based on field investigation data from 1959 to 2009. The field d...The characteristics of seasonal variation in phytoplankton biomass and dominant species in the Changjiang River Estuary and adjacent seas were discussed based on field investigation data from 1959 to 2009. The field data from 1981 to 2004 showed that the Chlorophyll-a concentration in surface seawater was between 0.4 and 8.5 ktg dm-3. The seasonal changes generally presented a bimodal trend, with the biomass peaks occurring in May and August, and Chlorophyll-a concentration was the lowest in winter. Seasonal biomass changes were mainly controlled by temperature and nutrient levels. From the end of autumn to the next early spring, phytoplankton biomass was mainly influenced by temperature, and in other seasons, nutrient level (including the nutrient supply from the terrestrial runoffs) was the major influence factor. Field investigation data from 1959 to 2009 demonstrated that dia- toms were the main phytoplankton in this area, and Skeletonerna costatum, Pseudo-nitzschia pungens, Coscinodiscus oculus-iridis, Thalassinoema nitzschioides, Paralia sulcata, Chaetoceros lorenzianus, Chaetoceros curvisetus, and Prorocentrum donghaiense Lu were common dominant species. The seasonal variations in major dominant phytoplankton species presented the following trends: 1) Skeletonema (mainly S. costatum) was dominant throughout the year; and 2) seasonal succession trends were Coscinodiscus (spring) →Chaetoceros (summer and autumn) → Coscinodiscus (winter). The annual dominance of S. costatum was attributed to its environmental eurytopicity and long standing time in surface waters. The seasonal succession of Coscinodiscus and Chaetoceros was associated with the seasonal variation in water stability and nutrient level in this area. On the other hand, long-term field data also indicated obvious interannual variation of phytoplankton biomass and community structure in the Changjiang River Estuary and adjacent seas: average annual phytoplankton biomass and dinoflagellate proportion both presented increased trends during the 1950s - 2000s.展开更多
Fish assemblage structure in the hypoxic zone in the Changjiang (Yangtze River) estuary and its adjacent waters were analyzed based on data from bottom trawl surveys conducted on the R/V Beidou in June, August and Oct...Fish assemblage structure in the hypoxic zone in the Changjiang (Yangtze River) estuary and its adjacent waters were analyzed based on data from bottom trawl surveys conducted on the R/V Beidou in June, August and October 2006. Four fish assemblages were identified in each survey using two-way indicator species analysis (TWIA). High fish biomass was found in the northern part, central part and coastal waters of the survey area; in contrast, high fish diversity was found in the southern part of the survey area and the Changjiang estuary outer waters. Therefore, it is difficult to maintain high fishery production when high fish diversity is evenly distributed in the fish community. Fish became smaller and fish size spectra tended to be narrower because of fish species variations and differences in growth characteristics. Fish diversity increased, the age to maturity was reduced and some migrant species were not collected in the surveys. Fish with low economic value, small size, simple age structure and low tropic level were predominant in fish assemblages in the Changjiang estuary and its adjacent waters. The lowest hypoxic value decreased in the Changjiang estuary and its adjacent waters.展开更多
Using optimal interpolation data assimilation of observed wave spectrum around Northeast coast of Taiwan Island, the typhoon driven wave nowcasting model in Southeast China Sea is setup. The SWAN (simulating waves nea...Using optimal interpolation data assimilation of observed wave spectrum around Northeast coast of Taiwan Island, the typhoon driven wave nowcasting model in Southeast China Sea is setup. The SWAN (simulating waves nearshore) model is used to calculate wave field and the input wind field is the QSCAT/NCEP (Quick Scatterometer/National Centers for Environmental Prediction) data. The two-dimensional wavelet transform is applied to analyze the X-band radar image of nearshore wave field and it reveals that the observed wave spectrum has shoaling characteristics in frequency domain. The reverse calculation approach of wave spectrum in deep water is proposed and validated with experimental tests. The two-dimensional digital low-pass filter is used to obtain the initialization wave field. Wave data during Typhoon Sinlaku is used to calibrate the data assimilation parameters and test the reverse calculation approach. Data assimilation corrects the significant wave height and the low frequency spectra energy evidently at Beishuang Station along Fujian Province coast, where the entire assimilation indexes are positive in verification moments. The nowcasting wave field shows that the present model can obtain more accurate wave predictions for coastal and ocean engineering in Southeast China Sea.展开更多
ERA5 data and station observation data are both of great importance in studying the regional meteorological and environmental characteristics.The accuracy of ERA5 reanalysis wind field data was evaluated using observa...ERA5 data and station observation data are both of great importance in studying the regional meteorological and environmental characteristics.The accuracy of ERA5 reanalysis wind field data was evaluated using observations at five offshore platforms in Jiangsu sea area in this study.Results revealed that ERA5 wind speed was generally in reasonable agreement with that observed at each station,and that the accuracy of ERA5 wind speed data was significant better than that of wind direction.The consistency of wind direction between ERA5 and each observation station was better in autumn and winter than that in spring and summer.With increasing wind speed,the mean absolute error and root mean squared error between the ERA5 and observed wind speed(direction)data increased(decreased)obviously.During periods of typhoon,ERA5 wind data were largely consistent with observational data in terms of increasing wind speed and changing wind direction;however,the ERA5 wind speeds were slightly low.The findings of this study could provide a basis for the application and further research of ERA5 wind data in Jiangsu offshore sea area.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.40830102)Ministry of Science and Technology(MOST)(Grant Nos.2006CB403706and2010CB950804)
文摘A fog threshold method for the detection of sea fog from Multi-function Transport Satellite (MTSAT1R) infrared (IR) channel data is presented.This method uses principle component analysis (PCA),texture analysis,and threshold detection to extract sea fog information.A heavy sea fog episode that occurred over China's adjacent sea area during 7 8 April 2008 was detected,indicating that the fog threshold method can effectively detect sea fog areas nearly 24 hours a day.MTSAT-1R data from March 2006,June 2007,and April 2008 were processed using the fog threshold method,and sea fog coverage information was compared with the meteorological observation report data from ships.The hit rate,miss rate,and false alarm rate of sea fog detection were 66.1%,27.3%,and 33.9%,respectively.The results show that the fog threshold method can detect the formation,evolution,and dissipation of sea fog events over period of time and that the method has superior temporal and spatial resolution relative to conventional ship observations.In addition,through MTSAT-1R data processing and a statistical analysis of sea fog coverage information for the period from 2006 to 2009,the monthly mean sea fog day frequency,spatial distribution and seasonal variation characteristics of sea fog over China's adjacent sea area were obtained.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX1-YW-12)the National Natural Science Foundation of China (Nos. 41030855,41006013)
文摘Using hydrographic data covering large areas of ocean for the period from June 21 to July 5 in 2009, we studied the circulation structure in the Luzon Strait area, examined the routes of water exchange between the South China Sea (SCS) and the Philippine Sea, and estimated the volume transport through Luzon Strait. We found that the Kuroshio axis follows a e-shaped path slightly east of 121°E in the upper layer. With an increase in depth, the Kuroshio axis became gradually farther from the island of Luzon. To study the water exchange between the Philippine Sea and the SCS, identification of inflows and outflows is necessary. We first identified which flows contributed to the water exchange through Luzon Strait, which differs from the approach taken in previous studies. We determined that the obvious water exchange is in the section of 121°E. The westward inflow from the Philippine Sea into the SCS is 6.39 Sv in volume, and mainly in the 100-500 m layer at 19.5°-20°N (accounting for 4.40 Sv), while the outflow from the SCS into the Philippine Sea is concentrated in the upper 100 m at 19°-20°N and upper 400 m at 21°-21.5°N, and below 240 m at 19°-19.5°N, accounting for 1.07, 3.02 and 3.43 Sv in volume transport, respectively.
基金the National Basic Research Program of China (Nos. 2001 CB409703 and 2010CB428701)the National Natural Science Foundation of China (Nos. 41140037 and 41276 069)
文摘The characteristics of seasonal variation in phytoplankton biomass and dominant species in the Changjiang River Estuary and adjacent seas were discussed based on field investigation data from 1959 to 2009. The field data from 1981 to 2004 showed that the Chlorophyll-a concentration in surface seawater was between 0.4 and 8.5 ktg dm-3. The seasonal changes generally presented a bimodal trend, with the biomass peaks occurring in May and August, and Chlorophyll-a concentration was the lowest in winter. Seasonal biomass changes were mainly controlled by temperature and nutrient levels. From the end of autumn to the next early spring, phytoplankton biomass was mainly influenced by temperature, and in other seasons, nutrient level (including the nutrient supply from the terrestrial runoffs) was the major influence factor. Field investigation data from 1959 to 2009 demonstrated that dia- toms were the main phytoplankton in this area, and Skeletonerna costatum, Pseudo-nitzschia pungens, Coscinodiscus oculus-iridis, Thalassinoema nitzschioides, Paralia sulcata, Chaetoceros lorenzianus, Chaetoceros curvisetus, and Prorocentrum donghaiense Lu were common dominant species. The seasonal variations in major dominant phytoplankton species presented the following trends: 1) Skeletonema (mainly S. costatum) was dominant throughout the year; and 2) seasonal succession trends were Coscinodiscus (spring) →Chaetoceros (summer and autumn) → Coscinodiscus (winter). The annual dominance of S. costatum was attributed to its environmental eurytopicity and long standing time in surface waters. The seasonal succession of Coscinodiscus and Chaetoceros was associated with the seasonal variation in water stability and nutrient level in this area. On the other hand, long-term field data also indicated obvious interannual variation of phytoplankton biomass and community structure in the Changjiang River Estuary and adjacent seas: average annual phytoplankton biomass and dinoflagellate proportion both presented increased trends during the 1950s - 2000s.
基金Supported by the National Natural Science Foundation of China (No. 30490233, 40906086)the National Basic Research Program of China (973 Program) (No. 2006CB400608)Taishan Scholar Program of Shandong Province, Postdoctoral creative foundation of Shandong Province and the Yellow & Bohai Sea Scientific Observation and Experiment Station for Fishery Resources and Environment, Ministry of Agriculture
文摘Fish assemblage structure in the hypoxic zone in the Changjiang (Yangtze River) estuary and its adjacent waters were analyzed based on data from bottom trawl surveys conducted on the R/V Beidou in June, August and October 2006. Four fish assemblages were identified in each survey using two-way indicator species analysis (TWIA). High fish biomass was found in the northern part, central part and coastal waters of the survey area; in contrast, high fish diversity was found in the southern part of the survey area and the Changjiang estuary outer waters. Therefore, it is difficult to maintain high fishery production when high fish diversity is evenly distributed in the fish community. Fish became smaller and fish size spectra tended to be narrower because of fish species variations and differences in growth characteristics. Fish diversity increased, the age to maturity was reduced and some migrant species were not collected in the surveys. Fish with low economic value, small size, simple age structure and low tropic level were predominant in fish assemblages in the Changjiang estuary and its adjacent waters. The lowest hypoxic value decreased in the Changjiang estuary and its adjacent waters.
基金supported by the Commonweal Program of Chinese Ministry of Water Resources( No.200901062)the National Natural Science Foundation of China ( No.50979033)the Research Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering ( No. 2009585812 and No. 2008491011)
文摘Using optimal interpolation data assimilation of observed wave spectrum around Northeast coast of Taiwan Island, the typhoon driven wave nowcasting model in Southeast China Sea is setup. The SWAN (simulating waves nearshore) model is used to calculate wave field and the input wind field is the QSCAT/NCEP (Quick Scatterometer/National Centers for Environmental Prediction) data. The two-dimensional wavelet transform is applied to analyze the X-band radar image of nearshore wave field and it reveals that the observed wave spectrum has shoaling characteristics in frequency domain. The reverse calculation approach of wave spectrum in deep water is proposed and validated with experimental tests. The two-dimensional digital low-pass filter is used to obtain the initialization wave field. Wave data during Typhoon Sinlaku is used to calibrate the data assimilation parameters and test the reverse calculation approach. Data assimilation corrects the significant wave height and the low frequency spectra energy evidently at Beishuang Station along Fujian Province coast, where the entire assimilation indexes are positive in verification moments. The nowcasting wave field shows that the present model can obtain more accurate wave predictions for coastal and ocean engineering in Southeast China Sea.
文摘ERA5 data and station observation data are both of great importance in studying the regional meteorological and environmental characteristics.The accuracy of ERA5 reanalysis wind field data was evaluated using observations at five offshore platforms in Jiangsu sea area in this study.Results revealed that ERA5 wind speed was generally in reasonable agreement with that observed at each station,and that the accuracy of ERA5 wind speed data was significant better than that of wind direction.The consistency of wind direction between ERA5 and each observation station was better in autumn and winter than that in spring and summer.With increasing wind speed,the mean absolute error and root mean squared error between the ERA5 and observed wind speed(direction)data increased(decreased)obviously.During periods of typhoon,ERA5 wind data were largely consistent with observational data in terms of increasing wind speed and changing wind direction;however,the ERA5 wind speeds were slightly low.The findings of this study could provide a basis for the application and further research of ERA5 wind data in Jiangsu offshore sea area.