Soil Moisture and Ocean Salinity (SMOS) Level 3 (L3) sea surface salinity (SSS) products are provided by the Barcelona Expert Centre (BEC). Strong biases were observed on the SMOS SSS products, thus the data f...Soil Moisture and Ocean Salinity (SMOS) Level 3 (L3) sea surface salinity (SSS) products are provided by the Barcelona Expert Centre (BEC). Strong biases were observed on the SMOS SSS products, thus the data from the Centre Aval de Traitement des Donnees SMOS (CATDS) were adjusted for biases using a large-scale correction derived from observed differences between the SMOS SSS and World Ocean Atlas (WOA) climatology data. However, this large-scale correction method is not suitable for correcting the large gradient of salinity biases. Here, we present a method for the correction of SSS regional bias of the monthly L3 products. Based on the stable characteristics of the large SSS biases from month to month in some regions, corrected SMOS SSS maps can be obtained from the monthly mean values after removing the regional biases. The accuracy of the SMOS SSS measurements is greatly improved, especially near the coastline, at high latitudes, and in some open ocean regions. The SMOS and ISAS SSS data are also compared with Aquarius SSS to verify the corrected SMOS SSS data. The correction method presented here only corrects annual mean biases. The measurement accuracy of the SSS may be improved by considering the influence of atmospheric and ocean circulation in different seasons and years.展开更多
The sound velocity of seafloor sediments from shallow seas can provide important information for harbor design, and ocean and seacoast engineering projects. In this study, in situ measurements were used to obtain accu...The sound velocity of seafloor sediments from shallow seas can provide important information for harbor design, and ocean and seacoast engineering projects. In this study, in situ measurements were used to obtain accurate sediment sound velocities at 45 stations offshore of Qingdao. The relationships between the sound velocity and granular properties of the seafloor sediments were analyzed. Sound velocity showed an increase with the sand content, sand-clay ratio, and sorting coefficient; and a nonlinear decreasing trend with increasing mean grain size and clay content. We plotted a sound velocity distribution map, which shows that the sound velocity was closely related to the geological environment. Previous empirical equations suggested by Hamilton, Anderson, and Liu were used to calculate the velocity with grain size. A comparison between the measured and calculated velocities indicates that the empirical equations have territorial limitations, and extensive data are essential to establish global empirical equations. Future work includes the calibration of the laboratory acoustic measurements with an in situ technique.展开更多
A new moored microstructure recorder(MMR) is designed, developed, tested, and evaluated. The MMR directly measures the high-frequency shear of velocity fl uctuations, with which we can estimate the dissipation rate of...A new moored microstructure recorder(MMR) is designed, developed, tested, and evaluated. The MMR directly measures the high-frequency shear of velocity fl uctuations, with which we can estimate the dissipation rate of turbulent kinetic energy. We summarize and discuss methods for estimating the turbulent kinetic energy dissipation rate. Instrument body vibrations contaminate the shear signal in an ocean fi eld experiment, and a compensating correction successfully removes this contamination. In both tank test and ocean fi eld experiment, the dissipation rate measured with the MMR agreed well with that measured using other instruments.展开更多
Based on faults surveying and research data in the Tianjin offshore areas,through studying tectonic structure,Quaternary activity,deep structure,stress and strain fields and seismicity in the Tianjin offshore areas,th...Based on faults surveying and research data in the Tianjin offshore areas,through studying tectonic structure,Quaternary activity,deep structure,stress and strain fields and seismicity in the Tianjin offshore areas,the activity and tectonic features of the faults are determined synthetically.Using seismo-geological data,and the historical and modern seismicity data,the frequency-magnitude relationship model normalized by 500a is established and based on the relationship between the upper limit of maximum magnitude M u and a t/b,the maximum magnitudes of the sea section of the Haihe river fault and the Haiyi fault are calculated.Then Poisson probability model is adopted and the quantitative parameters,such as the maximum magnitude,occurrence probability,recurrence cycle of the faults in the south Tianjin offshore areas in the coming 50~200a,are calculated.展开更多
基金Supported by the National Natural Science Foundation of China(No.41076117)
文摘Soil Moisture and Ocean Salinity (SMOS) Level 3 (L3) sea surface salinity (SSS) products are provided by the Barcelona Expert Centre (BEC). Strong biases were observed on the SMOS SSS products, thus the data from the Centre Aval de Traitement des Donnees SMOS (CATDS) were adjusted for biases using a large-scale correction derived from observed differences between the SMOS SSS and World Ocean Atlas (WOA) climatology data. However, this large-scale correction method is not suitable for correcting the large gradient of salinity biases. Here, we present a method for the correction of SSS regional bias of the monthly L3 products. Based on the stable characteristics of the large SSS biases from month to month in some regions, corrected SMOS SSS maps can be obtained from the monthly mean values after removing the regional biases. The accuracy of the SMOS SSS measurements is greatly improved, especially near the coastline, at high latitudes, and in some open ocean regions. The SMOS and ISAS SSS data are also compared with Aquarius SSS to verify the corrected SMOS SSS data. The correction method presented here only corrects annual mean biases. The measurement accuracy of the SSS may be improved by considering the influence of atmospheric and ocean circulation in different seasons and years.
基金Supported by the National Special Research Fund for Non-Profit Marine Sector(No.200905025)
文摘The sound velocity of seafloor sediments from shallow seas can provide important information for harbor design, and ocean and seacoast engineering projects. In this study, in situ measurements were used to obtain accurate sediment sound velocities at 45 stations offshore of Qingdao. The relationships between the sound velocity and granular properties of the seafloor sediments were analyzed. Sound velocity showed an increase with the sand content, sand-clay ratio, and sorting coefficient; and a nonlinear decreasing trend with increasing mean grain size and clay content. We plotted a sound velocity distribution map, which shows that the sound velocity was closely related to the geological environment. Previous empirical equations suggested by Hamilton, Anderson, and Liu were used to calculate the velocity with grain size. A comparison between the measured and calculated velocities indicates that the empirical equations have territorial limitations, and extensive data are essential to establish global empirical equations. Future work includes the calibration of the laboratory acoustic measurements with an in situ technique.
基金Supported by the National Natural Science Foundation of China(Nos.41006005,40906004,91028008,40890153,41176008,41176010)the National High Technology Research and Development Program of China(863 Program)(No.2008AA09A402)the Program for New Century Excellent Talents in University(No.NCET-10-0764)
文摘A new moored microstructure recorder(MMR) is designed, developed, tested, and evaluated. The MMR directly measures the high-frequency shear of velocity fl uctuations, with which we can estimate the dissipation rate of turbulent kinetic energy. We summarize and discuss methods for estimating the turbulent kinetic energy dissipation rate. Instrument body vibrations contaminate the shear signal in an ocean fi eld experiment, and a compensating correction successfully removes this contamination. In both tank test and ocean fi eld experiment, the dissipation rate measured with the MMR agreed well with that measured using other instruments.
基金funded by earthquake security infrastructure of Tianjin 11th "Five-year Plan" (Tianjin Development and Reforming Office[2009]-1230),the Spark Program of Earthquake Sciences(Grant No.XH13002)
文摘Based on faults surveying and research data in the Tianjin offshore areas,through studying tectonic structure,Quaternary activity,deep structure,stress and strain fields and seismicity in the Tianjin offshore areas,the activity and tectonic features of the faults are determined synthetically.Using seismo-geological data,and the historical and modern seismicity data,the frequency-magnitude relationship model normalized by 500a is established and based on the relationship between the upper limit of maximum magnitude M u and a t/b,the maximum magnitudes of the sea section of the Haihe river fault and the Haiyi fault are calculated.Then Poisson probability model is adopted and the quantitative parameters,such as the maximum magnitude,occurrence probability,recurrence cycle of the faults in the south Tianjin offshore areas in the coming 50~200a,are calculated.