Natural thermal entanglement between two qubits with XXX Heisenberg interaction is studied. For the antiferromagnet, increasing coupling strength or decreasing temperature under critical point increases the entangleme...Natural thermal entanglement between two qubits with XXX Heisenberg interaction is studied. For the antiferromagnet, increasing coupling strength or decreasing temperature under critical point increases the entanglement. Based on the thermal entanglement as quantum channel, entanglement and information of an input entangled state are transferred via partial teleportation. We find that the entanglement transferred will be lost du~ing the process, and for the entanglement fidelity the partial teleportation is superior to classical communication as concurrence of entangled channel beyond 1/4. We show that both correlation information in input entangled state and individual information of the teleported particle are linearly dissipated. With more entanglement in quantum channel, more entanglement and correlation information can be transferred.展开更多
The entanglement properties of a three-spin X X Z Heisenberg chain with three-spin interaction are studied by means of concurrence of pairwise entanglement. We show that ground-state pairwise entanglement, pairwise th...The entanglement properties of a three-spin X X Z Heisenberg chain with three-spin interaction are studied by means of concurrence of pairwise entanglement. We show that ground-state pairwise entanglement, pairwise thermal entanglement, or quantum phase transition is not present in antiferromagnetic spin chain. For the ferromagnetic case, quantum phase transition takes place at A = 1 for anisotropic interaction and at some values of three-spin coupling strength, and pairwise thermal entanglement increases when the value of J/T increases and with anisotropic interaction and three-spin interaction decrease. In addition, we find that increasing the anisotropic interaction and the three-spin interaction will decrease critical temperature.展开更多
Recent studies have revealed that two boreal spring sea surface temperature (SST) indices have potential to predict the number of western North Pacific (WNP) tropical cyclones (TCs) in the following peak typhoon...Recent studies have revealed that two boreal spring sea surface temperature (SST) indices have potential to predict the number of western North Pacific (WNP) tropical cyclones (TCs) in the following peak typhoon season (June-October): the northern tropical Atlantic (NTA) SST, and the SST gradient (SSTG) between the southwestern Pacific and western Pacic warm pool. The interannua[ and interdecadal variations of NTA SST and SSTG and their relationships to the number ofWNP TCs during 1950-2013 were compared. On the interdecadal timescale, SSTG showed better correlation with the number of WNP TCs than NTA SST. The interdecadal variation of NTA SST was closely associated with the Atlantic Multidecadal Oscillation, while that of SSTG was anti-correlated with the Central Pacific (CP) El Nino index at the interdecadal timescale. On the interannual timescale, both NTA SST and SSTG were modulated by two types of El Nino. The NTA SST revealed significant correlations with the number of WNPTCs beginning from the early 1960s; by contrast, SSTG showed significant correlations after the mid-1970s. Co-variability of NTA SST and SSTG existed after the late 1980s, induced by modulation from CP El Nino.The co-variability of these two spring SST predictors increased their prediction skill after the late 1980s, with enhanced correlation between the number of WNPTCs and the two predictors.展开更多
In this paper we study the entanglement in a two-qubit spin in the XYZ model, and teleport a two-qubit entangled state using this spin chain in the condition of the thermal equilibrium as a quantum channel. We investi...In this paper we study the entanglement in a two-qubit spin in the XYZ model, and teleport a two-qubit entangled state using this spin chain in the condition of the thermal equilibrium as a quantum channel. We investigate the effects of the interaction of z-component Jz, the inhomogeneous magnetic field b, the anisotropy γ and the temperature T on the entanglement and fidelity. In order to characterize the quality of the teleported state, we research the average fidelity Fα. High average fidelity of the teleportation is obtained when the temperature is very low. Under some condition, we also find that when innomogeneity increases to a certain value, the average fidelity can exhibit a larger revival than that for less values of b.展开更多
The Northern Indian Ocean (NIO) sea surface temperature (SST) warming, associated with the E1 Nifio/Southern Oscillations (ENSO) and the Indian Ocean Dipole (IOD) mode, is investigated using the International ...The Northern Indian Ocean (NIO) sea surface temperature (SST) warming, associated with the E1 Nifio/Southern Oscillations (ENSO) and the Indian Ocean Dipole (IOD) mode, is investigated using the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) monthly data for the period 1979-2010. Statistical analy- ses are used to identify respective contribution from ENSO and IOD. The results indicate that the first NIO SST warming in September-November is associated with an IOD event, while the second NIO SST warming in spring-summer following the mature phase of ENSO is associated with an ENSO event. In the year that IOD co-occurred with ENSO, NIO SST warms twice, rising in the ENSO developing year and decay year. Both short- wave radiation and latent heat flux contribute to the NIO SST variation. The change in shortwave radiation is due to the change in cloudiness. A cloud-SST feedback plays an important role in NIO SST warming. The latent heat flux is related to the change in monsoonal wind. In the first NIO warming, the SST anomaly is mainly due to the change in the latent heat flux. In the second NIO warming, both factors are important.展开更多
The Sea Level Anomaly-Torque (SLAT, relative to a reference location in the Pacific Ocean), which means the total torque of the gravity forces of sea waters with depths equal to the Sea Level Anomaly (S/A) in the ...The Sea Level Anomaly-Torque (SLAT, relative to a reference location in the Pacific Ocean), which means the total torque of the gravity forces of sea waters with depths equal to the Sea Level Anomaly (S/A) in the tropical Pacific Ocean, is defined in this study. The time series of the SLAT from merged altimeter data (1993-2003) had a great meridional variation during the 1997-1998 E1 Nifio event. By using historical upper layer temperature data (1955-2003) for the tropical Pacific Ocean, the temperature-based SLAT is also calculated and the meridional variation can be found in the historical E1 Nifio events (1955-2003), which suggests that the meridional shifts of the sea level anomaly are also intrinsic oscillating modes of the E1 Nifio cycles like the zonal shifts.展开更多
Hydrothermal fuid containing abundant matter erupts from seafloor, meets ambient cold seawater and forms chimneys. So the main matter origins of chimneys are seawater and matter which are taken by hydrothermal fluid f...Hydrothermal fuid containing abundant matter erupts from seafloor, meets ambient cold seawater and forms chimneys. So the main matter origins of chimneys are seawater and matter which are taken by hydrothermal fluid from deep reservoir. However, because of seawater's little contribution to the forming of chimneys, it is usually covered by the abundant matter which is taken by hydrothermal fluid. Therefore, chimneys formed in ordinary deep elements, cannot be used to study the seawater's seawater hydrothermal activity, containing complex contribution to their formation. While the native sulfur chimneys, formed by hydrothermal activity near the sea area off Kueishantao, are single sulfur composition (over 99%), and within chimneys distinct layers are seen. Different layers were sampled for trace element determination, with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). By analyzing the data, we consider C-layer (secondary inner-layer) as the framework layer of the chimney which formed early (Fig.4), and its trace elements derive from hydrothermal fluid. While the trace elements within A, B, D layers have undergone later alteration. A, B layers are affected by seawater and D layer by hydrothermal fluid. The increase of trace elements of A and B layers was calculated using C layer as background. Based on the known typical volume of chimneys of the near sea area off Kueishantao, we calculated the volume of seawater that contributed trace element to chimneys formation to be about 6.37×10^4 L. This simple quantified estimate may help us better understand the seafloor hydrothermal activity and chimneys.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 1044711.6 and 10325521 and the China Postdoctoral Science Foundation under Grant No. 2005038316
文摘Natural thermal entanglement between two qubits with XXX Heisenberg interaction is studied. For the antiferromagnet, increasing coupling strength or decreasing temperature under critical point increases the entanglement. Based on the thermal entanglement as quantum channel, entanglement and information of an input entangled state are transferred via partial teleportation. We find that the entanglement transferred will be lost du~ing the process, and for the entanglement fidelity the partial teleportation is superior to classical communication as concurrence of entangled channel beyond 1/4. We show that both correlation information in input entangled state and individual information of the teleported particle are linearly dissipated. With more entanglement in quantum channel, more entanglement and correlation information can be transferred.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10447116 and 10325521 and the China Postdoctoral Science Foundation under Grant No. 2005038316
文摘The entanglement properties of a three-spin X X Z Heisenberg chain with three-spin interaction are studied by means of concurrence of pairwise entanglement. We show that ground-state pairwise entanglement, pairwise thermal entanglement, or quantum phase transition is not present in antiferromagnetic spin chain. For the ferromagnetic case, quantum phase transition takes place at A = 1 for anisotropic interaction and at some values of three-spin coupling strength, and pairwise thermal entanglement increases when the value of J/T increases and with anisotropic interaction and three-spin interaction decrease. In addition, we find that increasing the anisotropic interaction and the three-spin interaction will decrease critical temperature.
基金funded by the Guangdong Natural Science Foundation[grant number 2015A030313796]the National Natural Science Foundation of China[grant numbers 41205026,41476009,41476010]+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number Xd A11010104]the National Program on Global Change and Air-Sea interaction[grant number GASi-i POVAi-04]the Knowledge innovation Program of the Chinese Academy of Sciences[grant number SQ201208]
文摘Recent studies have revealed that two boreal spring sea surface temperature (SST) indices have potential to predict the number of western North Pacific (WNP) tropical cyclones (TCs) in the following peak typhoon season (June-October): the northern tropical Atlantic (NTA) SST, and the SST gradient (SSTG) between the southwestern Pacific and western Pacic warm pool. The interannua[ and interdecadal variations of NTA SST and SSTG and their relationships to the number ofWNP TCs during 1950-2013 were compared. On the interdecadal timescale, SSTG showed better correlation with the number of WNP TCs than NTA SST. The interdecadal variation of NTA SST was closely associated with the Atlantic Multidecadal Oscillation, while that of SSTG was anti-correlated with the Central Pacific (CP) El Nino index at the interdecadal timescale. On the interannual timescale, both NTA SST and SSTG were modulated by two types of El Nino. The NTA SST revealed significant correlations with the number of WNPTCs beginning from the early 1960s; by contrast, SSTG showed significant correlations after the mid-1970s. Co-variability of NTA SST and SSTG existed after the late 1980s, induced by modulation from CP El Nino.The co-variability of these two spring SST predictors increased their prediction skill after the late 1980s, with enhanced correlation between the number of WNPTCs and the two predictors.
基金the Special Research Foundation for the Doctoral Program of Higher Education under Grant No.20050285002the Natural Science Foundation of Jiangsu Province under Grant No.04KJB140119
文摘In this paper we study the entanglement in a two-qubit spin in the XYZ model, and teleport a two-qubit entangled state using this spin chain in the condition of the thermal equilibrium as a quantum channel. We investigate the effects of the interaction of z-component Jz, the inhomogeneous magnetic field b, the anisotropy γ and the temperature T on the entanglement and fidelity. In order to characterize the quality of the teleported state, we research the average fidelity Fα. High average fidelity of the teleportation is obtained when the temperature is very low. Under some condition, we also find that when innomogeneity increases to a certain value, the average fidelity can exhibit a larger revival than that for less values of b.
基金supported by the National Basic Research Program of China(973 Program,2012CB955603 &2010 CB950302)the Knowledge Innovation Program of the Chinese Academy of Sciences(XDA05090404)the National Natural Science Foundation of China(41149908)
文摘The Northern Indian Ocean (NIO) sea surface temperature (SST) warming, associated with the E1 Nifio/Southern Oscillations (ENSO) and the Indian Ocean Dipole (IOD) mode, is investigated using the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) monthly data for the period 1979-2010. Statistical analy- ses are used to identify respective contribution from ENSO and IOD. The results indicate that the first NIO SST warming in September-November is associated with an IOD event, while the second NIO SST warming in spring-summer following the mature phase of ENSO is associated with an ENSO event. In the year that IOD co-occurred with ENSO, NIO SST warms twice, rising in the ENSO developing year and decay year. Both short- wave radiation and latent heat flux contribute to the NIO SST variation. The change in shortwave radiation is due to the change in cloudiness. A cloud-SST feedback plays an important role in NIO SST warming. The latent heat flux is related to the change in monsoonal wind. In the first NIO warming, the SST anomaly is mainly due to the change in the latent heat flux. In the second NIO warming, both factors are important.
基金This study is supported by the Doctoral Startup Foundation of 0cean University of China (2003)partly supported by the National Science Foundation of China (40506035)The altimeter products were produced by the CLS Space 0ceanography Division as part of the Environment and Climate EU ENACT project (EVK2-CT2001-00117) and with support from CNES.
文摘The Sea Level Anomaly-Torque (SLAT, relative to a reference location in the Pacific Ocean), which means the total torque of the gravity forces of sea waters with depths equal to the Sea Level Anomaly (S/A) in the tropical Pacific Ocean, is defined in this study. The time series of the SLAT from merged altimeter data (1993-2003) had a great meridional variation during the 1997-1998 E1 Nifio event. By using historical upper layer temperature data (1955-2003) for the tropical Pacific Ocean, the temperature-based SLAT is also calculated and the meridional variation can be found in the historical E1 Nifio events (1955-2003), which suggests that the meridional shifts of the sea level anomaly are also intrinsic oscillating modes of the E1 Nifio cycles like the zonal shifts.
基金Supported by the Pilot Project of Knowledge Innovation Project, Chinese Academy of Sciences (No.KZCX2-YW-211and KZCX3-SW- 223)the National Natural Science Foundation of China (No. 40830849)the Special Foundation for the Eleventh Five-Year Plan of COMRA (No. DYXM-115-02-1-03).
文摘Hydrothermal fuid containing abundant matter erupts from seafloor, meets ambient cold seawater and forms chimneys. So the main matter origins of chimneys are seawater and matter which are taken by hydrothermal fluid from deep reservoir. However, because of seawater's little contribution to the forming of chimneys, it is usually covered by the abundant matter which is taken by hydrothermal fluid. Therefore, chimneys formed in ordinary deep elements, cannot be used to study the seawater's seawater hydrothermal activity, containing complex contribution to their formation. While the native sulfur chimneys, formed by hydrothermal activity near the sea area off Kueishantao, are single sulfur composition (over 99%), and within chimneys distinct layers are seen. Different layers were sampled for trace element determination, with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). By analyzing the data, we consider C-layer (secondary inner-layer) as the framework layer of the chimney which formed early (Fig.4), and its trace elements derive from hydrothermal fluid. While the trace elements within A, B, D layers have undergone later alteration. A, B layers are affected by seawater and D layer by hydrothermal fluid. The increase of trace elements of A and B layers was calculated using C layer as background. Based on the known typical volume of chimneys of the near sea area off Kueishantao, we calculated the volume of seawater that contributed trace element to chimneys formation to be about 6.37×10^4 L. This simple quantified estimate may help us better understand the seafloor hydrothermal activity and chimneys.