A 600-year pre-industrial simulation with Bergen Climate Model(BCM)Version 2 is used to investigate the linkage between winter Arctic Oscillation(AO)and the Southeast Asian summer monsoon(SEASM)on the inter-decadal ti...A 600-year pre-industrial simulation with Bergen Climate Model(BCM)Version 2 is used to investigate the linkage between winter Arctic Oscillation(AO)and the Southeast Asian summer monsoon(SEASM)on the inter-decadal timescale.The results indicate an in-phase relationship between the AO and SEASM with periods of approximately 16–32 and 60–80 years.During the positive phase of winter AO,an anomalous surface anti-cyclonic atmosphere circulation appears over North Pacific in winter.The corresponding anomalies in ocean circulation and surface heat flux,particularly the latent and sensible heat flux,resemble a negative Pacific Decadal Oscillation(PDO)-like sea surface temperature(SST)pattern.The AO-associated PDO-like winter SST can persist into summer and can therefore lead to inter-decadal variability of summer monsoon rainfall in East and Southeast Asia.展开更多
A simple approach that considers both internal decadal variability and the effect of anthropogenic forcing is developed to predict the decadal components of global sea surface temperatures (SSTs) for the three decades...A simple approach that considers both internal decadal variability and the effect of anthropogenic forcing is developed to predict the decadal components of global sea surface temperatures (SSTs) for the three decades 2011-2040. The internal decadal component is derived by harmonic wave expansion analyses based on the quasiperiodic evolution of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO), as obtained from observational SST datasets. Furthermore, the external decadal component induced by anthropogenic forcing is assessed with a second-order fit based on the ensemble of projected SSTs in the experiments with multiple coupled climate models associated with the third Coupled Model Intercomparison Project (CMIP3) under the Intergovernmental Panels on Climate Change (IPCC) Special Reports on Emissions Scenario (SRES) A1B. A validation for the years from 2002 to 2010 based on a comparison of the predicted and the observed SST and their spatial correlation, as well as the root mean square error (RMSE), suggests that the approach is reasonable overall. In addition, the predicted results over the 50°S-50°N global band, the Indian Ocean, the western Pacific Ocean, the tropical eastern Pacific Ocean, and the North and the South Atlantic Ocean are presented.展开更多
Based on the merged satellite altimeter data and in-situ observations, as well as a diagnosis of linear baroclinic Rossby wave solutions, this study analyzed the rapidly rise of sea level/sea surface height (SSH) in...Based on the merged satellite altimeter data and in-situ observations, as well as a diagnosis of linear baroclinic Rossby wave solutions, this study analyzed the rapidly rise of sea level/sea surface height (SSH) in the tropical Pacific and Indian Oceans during recent two decades. Results show that the sea level rise signals in the tropical west Pacific and the southeast Indian Ocean are closely linked to each other through the pathways of oceanic waveguide within the Indonesian Seas in the form of thermocline adjustment. The sea level changes in the southeast Indian Ocean are strongly influenced by the low-frequency westward-propagating waves originated in the tropical Pacific, whereas those in the southwest Indian Ocean respond mainly to the local wind forcing. Analyses of the lead-lag correlation further reveal the different origins of interannual and interdecadal variabilities in the tropical Pacific. The interannual wave signals are dominated by the wind variability along the equatorial Pa- cific, which is associated with the El Nifio-Southern Oscillation; whereas the interdecadal signals are driven mainly by the wind curl off the equatorial Pacific, which is closely related to the Pacific Decadal Oscillation.展开更多
基金supported by the National Basic Research Program of China(Grant No.2012CB955401)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05110203)the Center for Climate Dynamics(Project:Integrated Model-data Approach for Understanding Multidecadal Natural Climate Variability)
文摘A 600-year pre-industrial simulation with Bergen Climate Model(BCM)Version 2 is used to investigate the linkage between winter Arctic Oscillation(AO)and the Southeast Asian summer monsoon(SEASM)on the inter-decadal timescale.The results indicate an in-phase relationship between the AO and SEASM with periods of approximately 16–32 and 60–80 years.During the positive phase of winter AO,an anomalous surface anti-cyclonic atmosphere circulation appears over North Pacific in winter.The corresponding anomalies in ocean circulation and surface heat flux,particularly the latent and sensible heat flux,resemble a negative Pacific Decadal Oscillation(PDO)-like sea surface temperature(SST)pattern.The AO-associated PDO-like winter SST can persist into summer and can therefore lead to inter-decadal variability of summer monsoon rainfall in East and Southeast Asia.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA05090406 and XDA05110203)the special projects of the China Meteorological Administration(Grant No.GYHY201006022)contribution to the DecCen and Blue Arc projects funded by the Research Council of Norway and to the Centre for Climate Dynamics at the Bjerknes Centre
文摘A simple approach that considers both internal decadal variability and the effect of anthropogenic forcing is developed to predict the decadal components of global sea surface temperatures (SSTs) for the three decades 2011-2040. The internal decadal component is derived by harmonic wave expansion analyses based on the quasiperiodic evolution of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO), as obtained from observational SST datasets. Furthermore, the external decadal component induced by anthropogenic forcing is assessed with a second-order fit based on the ensemble of projected SSTs in the experiments with multiple coupled climate models associated with the third Coupled Model Intercomparison Project (CMIP3) under the Intergovernmental Panels on Climate Change (IPCC) Special Reports on Emissions Scenario (SRES) A1B. A validation for the years from 2002 to 2010 based on a comparison of the predicted and the observed SST and their spatial correlation, as well as the root mean square error (RMSE), suggests that the approach is reasonable overall. In addition, the predicted results over the 50°S-50°N global band, the Indian Ocean, the western Pacific Ocean, the tropical eastern Pacific Ocean, and the North and the South Atlantic Ocean are presented.
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA11010103)the National Basic Research Program of China (Grant Nos. 2012CB955603, 2010CB950302)+1 种基金National Natural Science Foundation of China (Grant Nos. 41176024, 41176028)supported by the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘Based on the merged satellite altimeter data and in-situ observations, as well as a diagnosis of linear baroclinic Rossby wave solutions, this study analyzed the rapidly rise of sea level/sea surface height (SSH) in the tropical Pacific and Indian Oceans during recent two decades. Results show that the sea level rise signals in the tropical west Pacific and the southeast Indian Ocean are closely linked to each other through the pathways of oceanic waveguide within the Indonesian Seas in the form of thermocline adjustment. The sea level changes in the southeast Indian Ocean are strongly influenced by the low-frequency westward-propagating waves originated in the tropical Pacific, whereas those in the southwest Indian Ocean respond mainly to the local wind forcing. Analyses of the lead-lag correlation further reveal the different origins of interannual and interdecadal variabilities in the tropical Pacific. The interannual wave signals are dominated by the wind variability along the equatorial Pa- cific, which is associated with the El Nifio-Southern Oscillation; whereas the interdecadal signals are driven mainly by the wind curl off the equatorial Pacific, which is closely related to the Pacific Decadal Oscillation.