Based on main physical and mechanical properties of deep-sea sediment from C-C poly-metallic nodule mining area in the Pacific Ocean, the best sediment simulant was successfully prepared by mixing bentonite with a cer...Based on main physical and mechanical properties of deep-sea sediment from C-C poly-metallic nodule mining area in the Pacific Ocean, the best sediment simulant was successfully prepared by mixing bentonite with a certain content of water. Compression-shear coupling rheological constitutive model of the sediment simulant was established by endochronic theory and the coupling rheological parameters were obtained by compressive and compression-shear creep tests. A new calculation formula of turning traction force of the tracked mining vehicle was first derived based on the coupling rheological model and consideration of pushing resistance and sinkage of the tracked mining vehicle. Effects of the turning velocity, crawler spacing and contacting length of crawler with deep-sea sediment on the turning traction force were analyzed. Research results can provide theoretical foundation for operation safety and optimal design of the tracked mining vehicle.展开更多
文摘采用多体动力学建模仿真程序Recur Dyn/Track构建海底履带式集矿机多体动力学模型,实现了海底底质特殊力学模型在集矿机多体动力学模型中的二次开发与集成。开展小型履带式试验样车行走性能测试,与相应二次开发多体动力学模型仿真结果相比较,进一步验证二次开发建模方法的计算准确性。基于多体离散元法,应用Recur Dyn Process Net平台进行二次开发,采用C#语言编写建立超长采矿管线多体离散元动力学模型的自动参数化建模计算程序。集成海底履带式集矿机多体动力学模型与采矿管线系统多体离散元动力学模型,实现了深海采矿整体系统的多体动力学模型集成构建与联动仿真,获得并分析联动过程各子系统空间运动状态变化、子系统间相互作用力变化等动力学特性,为实际深海采矿系统的整体集成设计、性能预测及作业操控提供了参考。
基金Projects(51274251,11502226)supported by the National Natural Science Foundation of China
文摘Based on main physical and mechanical properties of deep-sea sediment from C-C poly-metallic nodule mining area in the Pacific Ocean, the best sediment simulant was successfully prepared by mixing bentonite with a certain content of water. Compression-shear coupling rheological constitutive model of the sediment simulant was established by endochronic theory and the coupling rheological parameters were obtained by compressive and compression-shear creep tests. A new calculation formula of turning traction force of the tracked mining vehicle was first derived based on the coupling rheological model and consideration of pushing resistance and sinkage of the tracked mining vehicle. Effects of the turning velocity, crawler spacing and contacting length of crawler with deep-sea sediment on the turning traction force were analyzed. Research results can provide theoretical foundation for operation safety and optimal design of the tracked mining vehicle.