期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Chirp数据反演琼州海峡海底沉积物物性 被引量:5
1
作者 陈静 吕修亚 +2 位作者 陈亮 郑红波 林秋金 《热带地理》 2017年第6期874-879,共6页
Chirp浅剖数据不仅能刻画海底地层的地质构造信息,还能用于海底沉积物物性特征的反演。利用在琼州海峡南方主网与海南电网第二回联网工程海底电缆路由调查项目中所获取的浅剖数据,采用地球物理方法即基于Biot-Stoll模型来反演海底表层... Chirp浅剖数据不仅能刻画海底地层的地质构造信息,还能用于海底沉积物物性特征的反演。利用在琼州海峡南方主网与海南电网第二回联网工程海底电缆路由调查项目中所获取的浅剖数据,采用地球物理方法即基于Biot-Stoll模型来反演海底表层沉积物声速、密度和孔隙度等物理性质。通过该反演方法得到研究区海底沉积物声速、密度、孔隙度及海底反射系数剖面,其中反演孔隙度、密度与实测孔隙度、密度相对误差均<10%,结果与实测值基本相符,表明Biot-Stoll模型和Chirp浅剖数据反演海底沉积物物性的方法在琼州海峡海域切实可行,为在该海域采用间接方法来获取海底沉积物物理性质特征提供了新的选择,同时也为海洋工程浅剖数据利用提供了新的思路。 展开更多
关键词 Chirp浅剖数据 Biot-Stoll模型 反演 海底沉积物物性 琼州海峡
下载PDF
A smart calibration model on track's pressure-sinkage characteristic of a tracked vehicle moving on soft seabed sediments 被引量:1
2
作者 曾谊晖 周育才 +1 位作者 刘道才 左青松 《Journal of Central South University》 SCIE EI CAS 2013年第4期911-917,共7页
The bentonite-water mixture was selected as the substitute of seabed sediments according to the in-situ measurement data of sediments 15-20 cm deep in China's ocean poly-metallic mining contract area and the soft ... The bentonite-water mixture was selected as the substitute of seabed sediments according to the in-situ measurement data of sediments 15-20 cm deep in China's ocean poly-metallic mining contract area and the soft seabed sediments could be simulated with certain proportion of the bentonite and water; besides, based on the theory on the interaction between the vehicle and ground and referenced to Bekker's apparatus and related experimental methods, a scenario on the experimental system of the pressure-sinkage characteristics of interaction between the track of tracked vehicle and soft seabed sediments was designed. The pressure-sinkage experiments were performed with different dimensions of penetration plates. The "pressure-sinkage" model based on Bekker's formula and correlation parameters were obtained to describe the corresponding characteristics of the seabed sediments and a smart calibration model on the pressure-sinkage characteristic of the track was established based on the function chain neural network, which could provide boundary loading conditions for simulation analysis of the tracked vehicle moving on the seabed. 展开更多
关键词 tracked vehicle TRACK seabed sediments pressure-sinkage characteristic smart calibration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部