Test tools and methods for synchronizing acoustic measurements in the course of stress-strain for seafloor sediment are elaborated and the test data of 45 sediment samples from the seafloor in the South China Sea are ...Test tools and methods for synchronizing acoustic measurements in the course of stress-strain for seafloor sediment are elaborated and the test data of 45 sediment samples from the seafloor in the South China Sea are analysed. The result shows that the coarser the sediment grains are, the smaller the porosity is and the larger the unconfined compression strength is, the higher the sound velocity is. In the course of stress-strain, the sediment sound velocity varies obviously with the stress. Acoustic characteristics of sediment in different strain phases and the influence of sediment microstructure change on its sound velocity are discussed. This study will be of important significance for surveying wells of petroleum geology and evaluating the base stabilization of seafloor engineering.展开更多
The sound velocity of seafloor sediments from shallow seas can provide important information for harbor design, and ocean and seacoast engineering projects. In this study, in situ measurements were used to obtain accu...The sound velocity of seafloor sediments from shallow seas can provide important information for harbor design, and ocean and seacoast engineering projects. In this study, in situ measurements were used to obtain accurate sediment sound velocities at 45 stations offshore of Qingdao. The relationships between the sound velocity and granular properties of the seafloor sediments were analyzed. Sound velocity showed an increase with the sand content, sand-clay ratio, and sorting coefficient; and a nonlinear decreasing trend with increasing mean grain size and clay content. We plotted a sound velocity distribution map, which shows that the sound velocity was closely related to the geological environment. Previous empirical equations suggested by Hamilton, Anderson, and Liu were used to calculate the velocity with grain size. A comparison between the measured and calculated velocities indicates that the empirical equations have territorial limitations, and extensive data are essential to establish global empirical equations. Future work includes the calibration of the laboratory acoustic measurements with an in situ technique.展开更多
Integrated studies of vertical sedimentary sequences, grain sizes, and benthic foraminifera and ostracoda, in combination with AMS 14C dating, and 210pb and 137Cs analysis were carried out in three vibracores taken fr...Integrated studies of vertical sedimentary sequences, grain sizes, and benthic foraminifera and ostracoda, in combination with AMS 14C dating, and 210pb and 137Cs analysis were carried out in three vibracores taken from the area of relict deposits on the western South Yellow Sea. The relict sands, which are about 0.4 m thick, overlie on the Early Holocene coastal marsh or tidal fiat deposits with an evident erosional interface in between. The middle and upper parts or sometimes the whole of the relict sands have been reworked under the modern dynamic environment. The sedimentation rate varies between 0.204).30 cmyear-l. The relict sands show a bimodal grain-size distribution pattern in frequency curves, with a sharp peak in the coarse fraction between 3(I) and 4(I) and a secondary peak in the fine fraction of about 7(I). Of the benthic foraminiferal and ostracod assemblages, the reworked relict sands are characterized by the mixing of the nearshore euryhaline shallow-water species and deeper water species. The erosional interface at the bottom of the relict sands is considered as a regional ravinement surface formed during the transgression in the Early Holocene due to shoreface retreating landwards. The relict sands were accumulated on the ravinement surface during the transgression in the deglaciation period as lag deposits after winnowing and reworking by marine dynamic processes. And the secondary peak of fine fraction in the frequency curve for the relict sands suggests the input of fine-grained sediments during the reworking process. As the conclusion, the relict sands in the study area are interpreted as a type of reworked relict sediments.展开更多
基金funded by the Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences (No. MSGL0606)the China National Natural Science Fundation (Ratification No. 40876018, 40476020)
文摘Test tools and methods for synchronizing acoustic measurements in the course of stress-strain for seafloor sediment are elaborated and the test data of 45 sediment samples from the seafloor in the South China Sea are analysed. The result shows that the coarser the sediment grains are, the smaller the porosity is and the larger the unconfined compression strength is, the higher the sound velocity is. In the course of stress-strain, the sediment sound velocity varies obviously with the stress. Acoustic characteristics of sediment in different strain phases and the influence of sediment microstructure change on its sound velocity are discussed. This study will be of important significance for surveying wells of petroleum geology and evaluating the base stabilization of seafloor engineering.
基金Supported by the National Special Research Fund for Non-Profit Marine Sector(No.200905025)
文摘The sound velocity of seafloor sediments from shallow seas can provide important information for harbor design, and ocean and seacoast engineering projects. In this study, in situ measurements were used to obtain accurate sediment sound velocities at 45 stations offshore of Qingdao. The relationships between the sound velocity and granular properties of the seafloor sediments were analyzed. Sound velocity showed an increase with the sand content, sand-clay ratio, and sorting coefficient; and a nonlinear decreasing trend with increasing mean grain size and clay content. We plotted a sound velocity distribution map, which shows that the sound velocity was closely related to the geological environment. Previous empirical equations suggested by Hamilton, Anderson, and Liu were used to calculate the velocity with grain size. A comparison between the measured and calculated velocities indicates that the empirical equations have territorial limitations, and extensive data are essential to establish global empirical equations. Future work includes the calibration of the laboratory acoustic measurements with an in situ technique.
基金funded by the National Natural Science Foundation of China (Grant Nos.41330964 and 40876034)the China Geological Survey (Grant No.1212010611401)
文摘Integrated studies of vertical sedimentary sequences, grain sizes, and benthic foraminifera and ostracoda, in combination with AMS 14C dating, and 210pb and 137Cs analysis were carried out in three vibracores taken from the area of relict deposits on the western South Yellow Sea. The relict sands, which are about 0.4 m thick, overlie on the Early Holocene coastal marsh or tidal fiat deposits with an evident erosional interface in between. The middle and upper parts or sometimes the whole of the relict sands have been reworked under the modern dynamic environment. The sedimentation rate varies between 0.204).30 cmyear-l. The relict sands show a bimodal grain-size distribution pattern in frequency curves, with a sharp peak in the coarse fraction between 3(I) and 4(I) and a secondary peak in the fine fraction of about 7(I). Of the benthic foraminiferal and ostracod assemblages, the reworked relict sands are characterized by the mixing of the nearshore euryhaline shallow-water species and deeper water species. The erosional interface at the bottom of the relict sands is considered as a regional ravinement surface formed during the transgression in the Early Holocene due to shoreface retreating landwards. The relict sands were accumulated on the ravinement surface during the transgression in the deglaciation period as lag deposits after winnowing and reworking by marine dynamic processes. And the secondary peak of fine fraction in the frequency curve for the relict sands suggests the input of fine-grained sediments during the reworking process. As the conclusion, the relict sands in the study area are interpreted as a type of reworked relict sediments.