期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
改进的CycleGAN网络用于水下显微图像颜色校正
被引量:
6
1
作者
王昊天
刘庆省
+4 位作者
陈亮
叶旺全
卢渊
郭金家
郑荣儿
《光学精密工程》
EI
CAS
CSCD
北大核心
2022年第12期1499-1508,共10页
针对海洋水体及悬浮颗粒物吸收和散射所导致的水下显微图像的颜色信息失真问题,本文提出了一种改进的循环一致性对抗网络(Cycle-consistent Adversarial Network,CycleGAN)算法,实现对水下目标物图像的颜色校正。通过在原始水下降质图...
针对海洋水体及悬浮颗粒物吸收和散射所导致的水下显微图像的颜色信息失真问题,本文提出了一种改进的循环一致性对抗网络(Cycle-consistent Adversarial Network,CycleGAN)算法,实现对水下目标物图像的颜色校正。通过在原始水下降质图像和重构水下图像之间加入R、G、B三个通道的结构相似性(Structure Similarity Index Measure,SSIM)损失函数,度量二者图像之间的信息损失,进而实现R、G、B三个通道颜色的精准调控,不仅增强了CycleGAN网络的整体性能,也提高了生成器生成图像的质量。然后,利用水下多色自制标靶及天然矿石的显微图像组成的训练数据集对本文所提的改进网络进行训练,所得的模型可用于实际矿石样品表面的显微图像颜色校正。结果表明,本文所提的改进的CycleGAN算法较其它方法在颜色校正方面有着明显的优势。与传统的Retinex算法相比,处理后的图像峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)和结构相似性指标分别提高41.85%、35.62%,而且,从主观视觉角度可发现经过校正的水下显微图像与空气中图像颜色相似度最高。综上,本文方法可以有效地对水下目标物图像进行颜色校正,并提升水下显微图像的质量,有望在海洋地质和海洋生物学方面得到应用。
展开更多
关键词
海底深部微生物观测
水下显微成像
SSIM损失函数
CycleGAN
颜色校正
下载PDF
职称材料
题名
改进的CycleGAN网络用于水下显微图像颜色校正
被引量:
6
1
作者
王昊天
刘庆省
陈亮
叶旺全
卢渊
郭金家
郑荣儿
机构
中国海洋大学信息科学与工程学部物理与光电工程学院
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2022年第12期1499-1508,共10页
基金
山东省重点研发计划(国际科技合作)项目(No.2019GHZ010)
山东省自然科学基金项目(No.ZR2020MF123)。
文摘
针对海洋水体及悬浮颗粒物吸收和散射所导致的水下显微图像的颜色信息失真问题,本文提出了一种改进的循环一致性对抗网络(Cycle-consistent Adversarial Network,CycleGAN)算法,实现对水下目标物图像的颜色校正。通过在原始水下降质图像和重构水下图像之间加入R、G、B三个通道的结构相似性(Structure Similarity Index Measure,SSIM)损失函数,度量二者图像之间的信息损失,进而实现R、G、B三个通道颜色的精准调控,不仅增强了CycleGAN网络的整体性能,也提高了生成器生成图像的质量。然后,利用水下多色自制标靶及天然矿石的显微图像组成的训练数据集对本文所提的改进网络进行训练,所得的模型可用于实际矿石样品表面的显微图像颜色校正。结果表明,本文所提的改进的CycleGAN算法较其它方法在颜色校正方面有着明显的优势。与传统的Retinex算法相比,处理后的图像峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)和结构相似性指标分别提高41.85%、35.62%,而且,从主观视觉角度可发现经过校正的水下显微图像与空气中图像颜色相似度最高。综上,本文方法可以有效地对水下目标物图像进行颜色校正,并提升水下显微图像的质量,有望在海洋地质和海洋生物学方面得到应用。
关键词
海底深部微生物观测
水下显微成像
SSIM损失函数
CycleGAN
颜色校正
Keywords
observation of microorganisms in deep seabed
underwater microscopic imaging
SSIM loss function
CycleGAN
color correction
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
TH691.9 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
改进的CycleGAN网络用于水下显微图像颜色校正
王昊天
刘庆省
陈亮
叶旺全
卢渊
郭金家
郑荣儿
《光学精密工程》
EI
CAS
CSCD
北大核心
2022
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部